A beautiful series!

Calculus Level 4

2 2 × 2 + 2 2 × 2 + 2 + 2 2 × 2 + 2 + 2 + 2 2 × \frac {\sqrt 2}2 \times \frac {\sqrt{2+\sqrt 2}}2 \times \frac {\sqrt{2+\sqrt{2+\sqrt 2}}}2 \times \frac {\sqrt{2+ \sqrt{2+\sqrt{2 +\sqrt 2}}}}2 \times \cdots

Find the the value of the infinite product above. Submit your answer as the area of a circle with the radius of this infinite product. (correct to 3 decimal places)

Courtesy: Stewart Calculus Eighth Edition Challenge Problems


The answer is 1.273239545.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jun 29, 2018

Consider the double-angle cosine identity below:

cos θ = 2 cos 2 θ 2 1 cos θ 2 = 1 + cos θ 2 For θ = π 4 cos π 4 = 2 2 cos π 8 = 2 + 2 2 Similarly cos π 16 = 2 + 2 + 2 2 and so on... \begin{aligned} \cos \theta & = 2\cos^2 \frac \theta 2 - 1 \\ \implies \cos \frac \theta 2 & = \sqrt{\frac {1+\cos \theta}2} & \small \color{#3D99F6} \text{For }\theta = \frac \pi 4 \implies \cos \frac \pi 4 = \frac {\sqrt 2}2 \\ \cos \frac \pi 8 & = \frac {\sqrt{2+\sqrt 2}}2 & \small \color{#3D99F6} \text{Similarly } \\ \cos \frac \pi{16} & = \frac {\sqrt{2+\sqrt{2+\sqrt 2}}}2 & \small \color{#3D99F6} \text{and so on...} \end{aligned}

This means that the product given is as follows:

P = cos π 4 × cos π 8 × cos π 16 × = lim n k = 2 n cos π 2 k = lim n sin π 2 n cos π 2 n sin π 2 n k = 2 n 1 cos π 2 k = lim n sin π 2 n 1 2 sin π 2 n k = 2 n 1 cos π 2 k Similarly = lim n sin π 2 n 2 2 2 sin π 2 n k = 2 n 2 cos π 2 k and so on... = lim n sin π 2 2 n 1 sin π 2 n = lim n 1 2 n 1 sin π 2 n = lim n ( π 2 × sin π 2 n π 2 n ) 1 Note that lim x 0 sin x x = 1 = 2 π \begin{aligned} P & = \cos \frac \pi 4 \times \cos \frac \pi 8 \times \cos \frac \pi {16} \times \cdots \\ & = \lim_{n \to \infty} \prod_{k=2}^{\color{#3D99F6}n} \cos \frac \pi{2^k} \\ & = \lim_{n \to \infty} \frac {\sin \frac \pi{2^n}\cos \frac \pi{2^n}}{\sin \frac \pi{2^n}} \prod_{k=2}^{\color{#D61F06}n-1} \cos \frac \pi{2^k} \\ & = \lim_{n \to \infty} \frac {\sin \frac \pi{2^{n-1}}}{2 \sin \frac \pi{2^n}} \prod_{k=2}^{n-1} \cos \frac \pi{2^k} & \small \color{#3D99F6} \text{Similarly } \\ & = \lim_{n \to \infty} \frac {\sin \frac \pi{2^{n-2}}}{2^2 \sin \frac \pi{2^n}} \prod_{k=2}^{n-2} \cos \frac \pi{2^k} & \small \color{#3D99F6} \text{and so on...} \\ & = \lim_{n \to \infty} \frac {\sin \frac \pi 2}{2^{n-1} \sin \frac \pi{2^n}} \\ & = \lim_{n \to \infty} \frac 1{2^{n-1} \sin \frac \pi{2^n}} \\ & = \lim_{n \to \infty} \left(\frac \pi 2 \times \frac {\sin \frac \pi{2^n}}{\frac \pi{2^n}} \right)^{-1} & \small \color{#3D99F6} \text{Note that }\lim_{x \to 0} \frac {\sin x}x = 1 \\ & = \frac 2\pi \end{aligned}

Therefore, the area of the circle with radius P P is π ( 2 π ) 2 = 4 π 1.273 \pi \left(\dfrac 2\pi\right)^2 = \dfrac 4\pi \approx \boxed{1.273} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...