A Beauuuuu Tiful series

Calculus Level 3

If 1 π 2 + 1 + 1 4 π 2 + 1 + 1 9 π 2 + 1 + 1 16 π 2 + 1 + = 1 e p q \dfrac{1}{\pi^2+1}+\dfrac{1}{4\pi^2+1}+ \dfrac{1}{9\pi^2+1}+\dfrac{1}{16\pi^2+1}+\cdots = \dfrac{1}{e^p-q} where p p and q q are positive integers, find the value of ( p + q ) 2 (p+q)^2 .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 20, 2018

Relevant wiki: Digamma Function

S = n = 1 1 ( n π ) 2 + 1 = n = 1 1 ( 1 + n π i ) ( 1 n π i ) = 1 2 n = 1 ( 1 1 + n π i + 1 1 n π i ) = i 2 π n = 1 ( 1 n + i π 1 n i π ) By ψ ( 1 + z ) = γ + n = 1 ( 1 n 1 n + z ) = i 2 π ( ψ ( 1 i π ) ψ ( 1 + i π ) ) where ψ ( ) denotes the digamma function. = i 2 π ( π cot ( i ) + i π ) Since ψ ( 1 z ) = ψ ( z ) + π cot ( π z ) = 1 2 ( e + e 1 e e 1 1 ) and ψ ( 1 + z ) = ψ ( z ) + 1 z = 1 e 2 1 \begin{aligned} S & = \sum_{n=1}^\infty \frac 1{(n\pi)^2+1} \\ & = \sum_{n=1}^\infty \frac 1{(1+n\pi i)(1-n\pi i)} \\ & = \frac 12 \sum_{n=1}^\infty \left(\frac 1{1+n\pi i} + \frac 1{1-n\pi i}\right) \\ & = \frac i{2\pi} \sum_{n=1}^\infty \left(\frac 1{n+ \frac i\pi} - \frac 1{n - \frac i\pi}\right) & \small \color{#3D99F6} \text{By }\psi (1+z) = - \gamma + \sum_{n=1}^\infty \left(\frac 1n - \frac 1{n+z}\right) \\ & = \frac i{2\pi} \left(\psi \left(1-\frac i\pi\right) - \psi \left(1+\frac i\pi\right) \right) & \small \color{#3D99F6} \text{where }\psi (\cdot) \text{ denotes the digamma function.} \\ & = \frac i{2\pi} \left(\pi \cot(i) + i\pi \right) & \small \color{#3D99F6} \text{Since }\psi (1-z) = \psi(z) + \pi \cot(\pi z) \\ & = \frac 12 \left(\frac {e + e^{-1}}{e - e^{-1}} -1 \right) & \small \color{#3D99F6} \text{and }\psi (1+z) = \psi(z) + \frac 1z \\ & = \frac 1{e^2-1} \end{aligned}

Therefore, ( p + q ) 2 = ( 2 + 1 ) 2 = 9 (p+q)^2 = (2+1)^2 = \boxed 9 .

Sir, In the second line you are missing i i .

Naren Bhandari - 2 years, 6 months ago

Log in to reply

Thanks. I got it changed.

Chew-Seong Cheong - 2 years, 6 months ago

@Naren Bhandari Hello......!! Another interesting question.....but you can probably look at this question

Aaghaz Mahajan - 2 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...