A Bernoulli Equation

Calculus Level 1

y + y = e x y 3 \large y'+y=e^xy^3

If a function y y satisfies the differential equation above, and y ( 0 ) = 1 3 y(0)=\dfrac{1}{\sqrt{3}} , what is y ( 1 ) y(1) ?

1 e 2 + e \frac{1}{\sqrt{e^2+e}} 1 e 2 2 e \frac{1}{\sqrt{e^2-2e}} 1 e 2 + 2 e \frac{1}{\sqrt{e^2+2e}} 1 e 2 e \frac{1}{\sqrt{e^2-e}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Samir Khan
Jun 13, 2016

Dividing through by y 3 y^3 , we have y y 3 + y 2 = e x . y'y^{-3}+y^{-2}=e^x. Now, if v = y 2 v=y^{-2} , then v = 2 y 3 y v'=-2y^{-3} y' , so our equation is 1 2 v + v = e x v 2 v = 2 e x . -\frac{1}{2} v'+v=e^x\implies v'-2v=-2e^x. Multiplying through by the integrating factor e 2 x e^{-2x} , we find v e 2 x 2 e 2 x v = 2 e x [ v e 2 x ] = 2 e x v e 2 x = 2 e x + C v = C e 2 x + 2 e x . v'e^{-2x}-2e^{-2x}v=-2e^{-x}\implies \left[ve^{-2x}\right]'=-2e^{-x}\implies ve^{-2x}=2e^{-x}+C\implies v=Ce^{2x}+2e^x. This means that y 2 = 1 C e 2 x + 2 e x , y^2=\frac{1}{Ce^{2x}+2e^x}, , and the initial condition tells us that C = 1 C=1 and to take the positive branch of the square root. Thus, y ( x ) = 1 e 2 x + 2 e x y ( 1 ) = 1 e 2 + 2 e . y(x)=\frac{1}{\sqrt{e^{2x}+2e^x}}\implies y(1)=\frac{1}{\sqrt{e^2+2e}}.

How did you find the integrating factor to be e^-2x?

Aldahir Pereira - 2 years ago

Log in to reply

The main aim in the solution is to create an expression that resembles d(xy) form (using the product rule) in the left hand side and then integrating both the sides of the resulting equation to get the answer.

Smriti Prasad - 1 year, 10 months ago

after multiplying I.F. how did the 2nd value (-2(e^(-2x))*v) vanish??

Fazla Alvi - 1 year, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...