A Big Limit

Level 2

N = lim x ( x 2 5 x + 8 x 2 + 1 ) 3 x + 7 N=\lim_{x\rightarrow\infty}\left(\dfrac{x^2-5x+8}{x^2+1}\right)^{-3x+7}

What is the sum of the digits of N ? \lfloor N\rfloor\text{?}


The answer is 28.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tunk-Fey Ariawan
Feb 15, 2014

Rewrite lim x ( x 2 5 x + 8 x 2 + 1 ) 3 x + 7 = lim x ( 1 + 7 5 x x 2 + 1 ) 7 3 x = lim x ( 1 + ( 7 5 x ) ( 7 3 x ) ( x 2 + 1 ) ( 7 3 x ) ) 7 3 x = lim x ( 1 + ( 15 x 2 56 x + 49 x 2 + 1 ) 7 3 x ) 7 3 x . \begin{aligned} \lim_{x\to \infty} \left(\frac{x^2-5x+8}{x^2+1}\right)^{-3x+7}&=\lim_{x\to \infty} \left(1+\frac{7-5x}{x^2+1}\right)^{7-3x}\\ &=\lim_{x\to \infty} \left(1+\frac{(7-5x)(7-3x)}{(x^2+1)(7-3x)}\right)^{7-3x}\\ &=\lim_{x\to \infty} \left(1+\frac{\left(\frac{15x^2-56x+49}{x^2+1}\right)}{7-3x}\right)^{7-3x}.\\ \end{aligned} By formal definition of exponential function , it is clear that lim x ( 1 + ( 15 x 2 56 x + 49 x 2 + 1 ) 7 3 x ) 7 3 x = exp ( lim x 15 x 2 56 x + 49 x 2 + 1 ) . \begin{aligned} \lim_{x\to \infty} \left(1+\frac{\left(\frac{15x^2-56x+49}{x^2+1}\right)}{7-3x}\right)^{7-3x}&=\exp\left(\lim_{x\to \infty}\frac{15x^2-56x+49}{x^2+1}\right).\\ \end{aligned} Therefore N = exp ( lim x 15 x 2 56 x + 49 x 2 + 1 ) = exp ( 15 ) N = 3269017. \begin{aligned} N&=\exp\left(\lim_{x\to \infty}\frac{15x^2-56x+49}{x^2+1}\right)\\ &=\exp(15)\\ \lfloor N \rfloor&=3269017. \end{aligned} Thus, the sum of the digits of N = 28 \,\lfloor N \rfloor=\boxed{28} . # Q . E . D . # \text{\# }\mathbb{Q}.\mathbb{E}.\mathbb{D}.\text{\#}

Is there any way to evaluate [e^15] without calculator?.

Arghyadeep Chatterjee - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...