No Calculators Allowed!

Level 2

Evaluate 1999 2000 2001 2002 + 1 . \sqrt{1999 \cdot 2000 \cdot 2001 \cdot 2002 + 1}.


The answer is 4001999.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Oon Han
Sep 10, 2019

Let x = 2000 x = 2000 . 1999 2000 2001 2002 + 1 = ( x 1 ) ( x ) ( x + 1 ) ( x + 2 ) + 1 = x 4 + 2 x 3 x 2 2 x + 1 = x 4 + x 3 x 2 + x 3 + x 2 x x 2 x + 1 = ( x 2 + x 1 ) ( x 2 + x 1 ) = ( x 2 + x 1 ) 2 = x 2 + x 1 = x 2 + x 1 = 200 0 2 + 2000 1 = 4001999 \begin{aligned} \sqrt{1999 \cdot 2000 \cdot 2001 \cdot 2002 + 1} &= \sqrt{(x-1)(x)(x+1)(x+2) + 1} \\ &= \sqrt{x^4 + 2x^3 - x^2 - 2x + 1} \\ &= \sqrt{x^4 + x^3 - x^2 + x^3 + x^2 - x - x^2 - x + 1} \\ &= \sqrt{(x^2 + x - 1)(x^2 + x - 1)} \\ &= \sqrt{(x^2 + x - 1)^2} \\ &= |x^2 + x - 1| \\ &= x^2 + x - 1 \\ &= 2000^2 + 2000 - 1 \\ &= \boxed{4001999} \end{aligned}

Note: x 2 + x 1 = x 2 + x 1 |x^2 + x - 1| = x^2 + x - 1 since we are dealing with only non-negative numbers.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...