Given that cos 2 θ = − 3 1 , find the value of sin 6 θ − cos 6 θ .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Didn't think of using sin ( 2 θ ) = 2 sin θ cos θ . Nice!
Dude, l just wanna say your solutions are outstanding. Neat and logical.
cos 2 θ cos 2 θ − sin 2 θ sin 2 θ − cos 2 θ ( sin 2 θ − cos 2 θ ) 3 sin 6 θ − 3 sin 4 θ cos 2 θ + 3 sin 2 θ cos 4 θ − cos 6 θ sin 6 θ − 3 sin 2 θ cos 2 θ ( sin 2 θ − cos 2 θ ) − cos 6 θ sin 6 θ − 3 sin 2 θ cos 2 θ ( 3 1 ) − cos 6 θ sin 6 θ − cos 6 θ = − 3 1 = − 3 1 = 3 1 = ( 3 1 ) 3 = 2 7 1 = 2 7 1 = 2 7 1 = 2 7 1 + sin 2 θ cos 2 θ = 2 7 1 + 4 1 sin 2 2 θ = 2 7 1 + 4 1 ( 1 − cos 2 2 θ ) = 2 7 1 + 4 1 ( 1 − 9 1 ) = 2 7 7
Relevant wiki: Factorization of Polynomials
From the double angle identities and pythagorean identities , cos 2 θ = cos 2 θ − sin 2 θ = − 3 1 and sin 2 θ + cos 2 θ = 1 .
Hence, by reversing the perfect cube identity ,
sin 6 θ − cos 6 θ = − ( cos 6 θ − sin 6 θ ) = − [ ( cos 2 θ − sin 2 θ ) 3 + 3 cos 4 θ sin 2 θ − 3 cos 2 θ sin 4 θ ] = − [ ( cos 2 θ − sin 2 θ ) 3 + 3 cos 2 θ sin 2 θ ( cos 2 θ − sin 2 θ ) ] = − [ ( cos 2 θ − sin 2 θ ) 3 + 4 3 ( 4 cos 2 θ sin 2 θ ) ( cos 2 θ − sin 2 θ ) ] = − { ( cos 2 θ − sin 2 θ ) 3 + 4 3 [ ( cos 2 θ + sin 2 θ ) 2 − ( cos 2 θ − sin 2 θ ) 2 ] ( cos 2 θ − sin 2 θ ) } = − { ( − 3 1 ) 3 + 4 3 [ ( 1 ) 2 − ( − 3 1 ) 2 ] ( − 3 1 ) } = 2 7 7 □ or by factoring sin 6 θ − cos 6 θ directly,
sin 6 θ − cos 6 θ = − ( cos 2 θ − sin 2 θ ) ( cos 4 θ + cos 2 θ sin 2 θ + sin 4 θ ) = − ( cos 2 θ − sin 2 θ ) [ ( cos 2 θ + sin 2 θ ) 2 − cos 2 θ sin 2 θ ] = − ( cos 2 θ − sin 2 θ ) [ ( cos 2 θ + sin 2 θ ) 2 − 4 1 ( 4 cos 2 θ sin 2 θ ) ] = − ( cos 2 θ − sin 2 θ ) { ( cos 2 θ + sin 2 θ ) 2 − 4 1 [ ( cos 2 θ + sin 2 θ ) 2 − ( cos 2 θ − sin 2 θ ) 2 ] } = − ( − 3 1 ) { ( 1 ) 2 − 4 1 [ ( 1 ) 2 − ( − 3 1 ) 2 ] } = 2 7 7 □
Please post a solution if you have any easier ones :)
using
S i n 2 ( θ ) = 2 1 − C o s ( 2 θ ) = 2 1 − 3 − 1 = 3 2
and
C o s 2 ( θ ) = 2 1 + C o s ( 2 θ ) = 2 1 + 3 − 1 = 3 1
we get
S i n 6 ( θ ) = ( S i n 2 ( θ ) ) 3 = ( 3 2 ) 3 = 2 7 8
C o s 6 ( θ ) = ( C o s 2 ( θ ) ) 3 = ( 3 1 ) 3 = 2 7 1
Thus
S i n 6 ( θ ) − C o s 6 ( θ ) = 2 7 8 − 2 7 1 = 2 7 1
Problem Loading...
Note Loading...
Set Loading...
Identities I'll use:
a 3 − b 3 = ( a − b ) ( a 2 + a b + b 2 )
sin 2 θ + cos 2 θ = 1
sin ( 2 θ ) = 2 sin θ cos θ
cos ( 2 θ ) = cos 2 θ − sin 2 θ
Hence
sin 6 θ − cos 6 θ = ( sin 2 θ ) 3 − ( cos 2 θ ) 3 = ( sin 2 θ − cos 2 θ ) ( sin 4 θ + sin 2 θ cos 2 θ + cos 4 θ ) = [ − cos ( 2 θ ) ] ( sin 4 θ + cos 4 θ + 2 sin 2 θ cos 2 θ − sin 2 θ cos 2 θ ) = 3 1 [ ( sin 2 θ + cos 2 θ ) 2 − sin 2 θ cos 2 θ ] = 3 1 [ 1 2 − 4 sin 2 ( 2 θ ) ] = 3 1 [ 1 − 4 1 − cos 2 ( 2 θ ) ] = 3 1 ( 1 − 4 1 − 9 1 ) = 3 1 ( 1 − 9 2 ) = 3 1 ⋅ 9 7 = 2 7 7