A Blazer?

Number Theory Level pending

101 x 3 2019 x y + 101 y 3 = 100 101x^3-2019xy+101y^3=100

If all the positive integer solutions of the equation above are ( x 1 , y 1 ) (x_1,y_1) , ( x 2 , y 2 ) (x_2,y_2) , ( x 3 , y 3 ) (x_3,y_3) , ( x n , y n ) \cdots (x_n,y_n) , find the value of x 1 + y 1 + x 2 + y 2 + x 3 + y 3 + + x n + y n x_1+y_1+x_2+y_2+x_3+y_3+\cdots +x_n+y_n .


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mohammed Imran
Feb 27, 2020

The equation can be rewritten as: 101 ( x 3 20 x y + y 3 ) + x y = 100 101(x^3-20xy+y^3)+xy=100 since x,y are positive integers, it forces : ( x 3 20 x y + y 3 ) = 0 (x^3-20xy+y^3)=0 because if ( x 3 20 x y + y 3 ) = 1 (x^3-20xy+y^3)=1 then L.H.S>R.H.S hence it has to be 0. So the equation reduces to x y = 100 xy=100 . A little bit of bruteforcing gives x=y=10 as the only solution. And hence the answer is 10+10=20.

What, if x 3 20 x y + y 3 < 0 x^3-20xy+y^3<0 ?

A Former Brilliant Member - 1 year, 3 months ago

Log in to reply

Happens when (x+y)(x^2-xy+y^2)<20xy. Let x+y=a and xy=b. So it happens when
a^3-3ab<20b.By AM GM, a^2 is greater than or equal to 4b. So it happens when a^2(a-20)<0. So a<20. Simple bruteforcing gives this is impossible

Nitin Kumar - 1 year, 3 months ago

that bruteforcing is not simple. But still it can be done in a few minutes

Nitin Kumar - 1 year, 3 months ago

Oh yes i didnt notice it!!!

Mohammed Imran - 1 year, 3 months ago

Here is an alternate solution. We are given that x, y are positive integers such that. 101x^3-2019xy+101y^3=100. The key trick of this problem is to note that 2019=-1(mod101). So the given equation can be written as
101(x^3-20xy+y^3)=100-xy. So 100-xy is divisible by 101. So 100-xy=0 as 100-xy<101 because xy>0. So xy=100. Hence, x^3-20xy+y^3=0 so.
x^3+y^3=2000. Let x+y=z. Then with a little factorising, z(z^2-300)=2000. So z^3-300z-2000=0. So ((z+10)^2)(z-20)=0. Hence, z=20 because z>0. Simple solving gives x=y=10

Nitin Kumar - 1 year, 3 months ago

Since x x and y y are positive, x 3 + y 3 2 ( x y ) 1.5 x^3+y^3\geq 2(xy)^{1.5} . So 100 = 101 ( x 3 + y 3 ) 2019 x y 202 ( x y ) 1.5 2019 x y 100=101(x^3+y^3)-2019xy\geq 202(xy)^{1.5}-2019xy . Simplifying we get ( x y 100 ) ( 40804 x 2 y 2 + 4039 x y + 100 ) 0 (xy-100)(40804x^2y^2+4039xy+100)\leq 0 . Since 40804 x 2 y 2 + 4039 x y + 100 > 0 40804x^2y^2+4039xy+100>0 , therefore x y 100 0 xy-100\leq 0 , or x y 100 xy\leq 100 . So it suffices to check only ten values of any one of x x and y y , say x = 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 x=1,2,3,4,5,6,7,8,9,10 . A quick check shows that the only values of x x and y y satisfying the given equation are x = 10 , y = 10 x=10,y=10 , and so x + y = 20 x+y=\boxed {20}

Superb solution

Mohammed Imran - 1 year, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...