A blend of Graphs and limits!

Calculus Level 5

The area bounded by the points lying in between the lines x + 5 = 0 x+5=0 and x 5 = 0 x-5=0 satisfying the equation y = tan 1 x \left| \left\lfloor y \right\rfloor \right| =\left| \left\lfloor \tan ^{ -1 }{ \left\lfloor x \right\rfloor } \right\rfloor \right| is A.

Consider a function f : R R f:R\rightarrow R . The graph of the above function has an asymptote 2 y = x + 2 2y=x+2 . Then lim x [ [ ( 2 f ( x ) + 1 ) ( 2 f ( x ) + 3 ) ( 2 f ( x ) 5 ) ( 2 f ( x ) 3 ) ( 2 f ( x ) 1 ) ] 1 5 f ( x ) f ( x ) ] x ( 2 f ( x ) x ) = e L \lim _{ x\rightarrow \infty }{ { \left[ \frac { { \left[ \left( 2f\left( x \right) +1 \right) \left( 2f\left( x \right) +3 \right) \left( 2f\left( x \right) -5 \right) \left( 2f\left( x \right) -3 \right) \left( 2f\left( x \right) -1 \right) \right] }^{ \frac { 1 }{ 5 } }-f\left( x \right) }{ f\left( x \right) } \right] }^{ x\left( 2f\left( x \right) -x \right) } } =\quad { e }^{ L } . Then A × L = \left| A\times L \right| =

Details and assumptions :

. \left| . \right| represents Absolute Value function .

. \left\lfloor . \right\rfloor represents Greatest Integer function .

'e' represents exponential number .


The answer is 72.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Shishir G.
May 9, 2015

The shaded region in the above graph represents the given equation . And it sums up to 18. So A=18.

The asymptote is given as y = x 2 + 1 y=\frac { x }{ 2 } +1 .
We know that if lim x f ( x ) x = m \lim _{ x\rightarrow \infty }{ \frac { f\left( x \right) }{ x } =m } , and lim x ( f ( x ) m x ) = c \lim _{ x\rightarrow \infty }{ \left( f\left( x \right) -mx \right) } =c , then equation of the asymptote is given as y = m x + c y=mx+c . Comparing this with the given equation of asymptote we have lim x f ( x ) x = 1 2 \lim _{ x\rightarrow \infty }{ \frac { f\left( x \right) }{ x } } =\quad \frac { 1 }{ 2 } and lim x ( f ( x ) x 2 ) = 1 \lim _{ x\rightarrow \infty }{ \left( f\left( x \right) -\frac { x }{ 2 } \right) } =1 .

lim x [ [ ( 2 f ( x ) + 1 ) ( 2 f ( x ) + 3 ) ( 2 f ( x ) 5 ) ( 2 f ( x ) 3 ) ( 2 f ( x ) 1 ) ] 1 5 f ( x ) f ( x ) ] x ( 2 f ( x ) x ) W e c a n o b s e r v e t h a t t h e l i m i t i s o f t h e f o r m 1 = lim x [ 1 + [ ( 2 f ( x ) + 1 ) ( 2 f ( x ) + 3 ) ( 2 f ( x ) 5 ) ( 2 f ( x ) 3 ) ( 2 f ( x ) 1 ) ] 1 5 2 f ( x ) f ( x ) ] x ( 2 f ( x ) x ) = e lim x [ [ ( 2 f ( x ) + 1 ) ( 2 f ( x ) + 3 ) ( 2 f ( x ) 5 ) ( 2 f ( x ) 3 ) ( 2 f ( x ) 1 ) ] 1 5 2 f ( x ) f ( x ) ] ( x ( 2 f ( x ) x ) ) = e lim x [ [ 32 ( f ( x ) ) 5 80 ( f ( x ) ) 4 80 ( f ( x ) ) 3 + 200 ( f ( x ) ) 2 + 18 f ( x ) 45 ] 1 5 ( 32 ( f ( x ) ) 5 ) 1 5 f ( x ) ] ( x ( 2 f ( x ) x ) ) I f w e c o n s i d e r t = 32 ( f ( x ) ) 5 80 ( f ( x ) ) 4 80 ( f ( x ) ) 3 + 200 ( f ( x ) ) 2 + 18 f ( x ) 45 a n d u = 32 ( f ( x ) ) 5 , t 1 5 u 1 5 = t u t 4 5 + t 3 5 u 1 5 + t 2 5 u 2 5 + t 1 5 u 3 5 + u 4 5 S o l v i n g a s a b o v e , L i m i t = e lim x [ 80 ( f ( x ) ) 4 80 ( f ( x ) ) 3 + 200 ( f ( x ) ) 2 + 18 f ( x ) f ( x ) ( 80 ( f ( x ) ) 4 + t e r m s h a v i n g l o w e r p o w e r s o f f ( x ) ) ] ( x ( 2 f ( x ) x ) ) N o w , b y p u t t i n g lim x x f ( x ) = 2 a n d lim x ( 2 f ( x ) x ) = 2 , w e g e t t h e l i m i t a s e 4 . S o L = 4. A × L = 18 × ( 4 ) = 72 \therefore \quad \lim _{ x\rightarrow \infty }{ { \left[ \frac { { \left[ \left( 2f\left( x \right) +1 \right) \left( 2f\left( x \right) +3 \right) \left( 2f\left( x \right) -5 \right) \left( 2f\left( x \right) -3 \right) \left( 2f\left( x \right) -1 \right) \right] }^{ \frac { 1 }{ 5 } }-f\left( x \right) }{ f\left( x \right) } \right] }^{ x\left( 2f\left( x \right) -x \right) } } \\ We\quad can\quad observe\quad that\quad the\quad limit\quad is\quad of\quad the\quad form\quad { 1 }^{ \infty }\\ =\quad \lim _{ x\rightarrow \infty }{ { \left[ 1+\frac { { \left[ \left( 2f\left( x \right) +1 \right) \left( 2f\left( x \right) +3 \right) \left( 2f\left( x \right) -5 \right) \left( 2f\left( x \right) -3 \right) \left( 2f\left( x \right) -1 \right) \right] }^{ \frac { 1 }{ 5 } }-2f\left( x \right) }{ f\left( x \right) } \right] }^{ x\left( 2f\left( x \right) -x \right) } } \\ =\quad { e }^{ \lim _{ x\rightarrow \infty }{ \left[ \frac { { \left[ \left( 2f\left( x \right) +1 \right) \left( 2f\left( x \right) +3 \right) \left( 2f\left( x \right) -5 \right) \left( 2f\left( x \right) -3 \right) \left( 2f\left( x \right) -1 \right) \right] }^{ \frac { 1 }{ 5 } }-2f\left( x \right) }{ f\left( x \right) } \right] \left( x\left( 2f\left( x \right) -x \right) \right) } }\\ =\quad { e }^{ \lim _{ x\rightarrow \infty }{ \left[ \frac { { \left[ 32{ \left( f\left( x \right) \right) }^{ 5 }-80{ \left( f\left( x \right) \right) }^{ 4 }-80{ \left( f\left( x \right) \right) }^{ 3 }+200{ \left( f\left( x \right) \right) }^{ 2 }+18f\left( x \right) -45 \right] }^{ \frac { 1 }{ 5 } }-{ \left( 32{ \left( f\left( x \right) \right) }^{ 5 } \right) }^{ \frac { 1 }{ 5 } } }{ f\left( x \right) } \right] \left( x\left( 2f\left( x \right) -x \right) \right) } }\\ If\quad we\quad consider\quad t=32{ \left( f\left( x \right) \right) }^{ 5 }-80{ \left( f\left( x \right) \right) }^{ 4 }-80{ \left( f\left( x \right) \right) }^{ 3 }+200{ \left( f\left( x \right) \right) }^{ 2 }+18f\left( x \right) -45\quad and\quad u=32{ \left( f\left( x \right) \right) }^{ 5 }\quad ,\\ { t }^{ \frac { 1 }{ 5 } }-{ u }^{ \frac { 1 }{ 5 } }=\quad \frac { t-u }{ { t }^{ \frac { 4 }{ 5 } }+{ t }^{ \frac { 3 }{ 5 } }{ u }^{ \frac { 1 }{ 5 } }+t^{ \frac { 2 }{ 5 } }{ u }^{ \frac { 2 }{ 5 } }+{ t }^{ \frac { 1 }{ 5 } }{ u }^{ \frac { 3 }{ 5 } }+{ u }^{ \frac { 4 }{ 5 } } } \\ Solving\quad as\quad above\quad ,\quad \\ Limit\quad =\quad { e }^{ \lim _{ x\rightarrow \infty }{ \left[ \frac { -80{ \left( f\left( x \right) \right) }^{ 4 }-80{ \left( f\left( x \right) \right) }^{ 3 }+200{ \left( f\left( x \right) \right) }^{ 2 }+18f\left( x \right) }{ f\left( x \right) \left( 80{ \left( f\left( x \right) \right) }^{ 4 }+\quad terms\quad having\quad lower\quad powers\quad of\quad f\left( x \right) \right) } \right] \left( x\left( 2f\left( x \right) -x \right) \right) } }\quad \\ Now\quad ,\quad by\quad putting\quad \lim _{ x\rightarrow \infty }{ \frac { x }{ f\left( x \right) } =2\quad and\quad \quad \lim _{ x\rightarrow \infty }{ \left( 2f\left( x \right) -x \right) } } =2\quad ,\\ we\quad get\quad the\quad limit\quad as\quad { e }^{ -4 }.\quad So\quad L=-4.\\ \therefore \quad \left| A\times L \right| =\left| 18\times \left( -4 \right) \right| =72

can you please explain how did you plot the graph

Navin Murarka - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...