A blend of trigonometry and logarithms

Geometry Level 2

e log 10 tan 1 × e log 10 tan 2 × × e log 10 tan 8 9 { e }^{ \log _{ 10 }{ \tan 1^\circ } }\times { e }^{ \log _{ 10 }{ \tan 2^\circ } } \times \ldots \times { e }^{ \log _{ 10 }{ \tan 89^\circ } }


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kay Xspre
Aug 1, 2015

e l o g 10 n = 1 89 t a n ( n ) e^{log_{10}\prod_{n=1}^{89}tan(n^{\circ})} = e l o g 10 n = 1 44 t a n ( n ) n = 1 44 c o t ( n ) t a n ( 4 5 ) = e^{log_{10}\prod_{n=1}^{44}tan(n^{\circ})\prod_{n=1}^{44}cot(n^{\circ})tan(45^{\circ})} = e l o g 10 1 =e^{log_{10}1} From here it will be e 0 = 1 e^0 = 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...