Find the coefficient of x x

Algebra Level 3

Find the coefficient of x x in the expansion of

( 1 2 x 3 + 3 x 5 ) ( 1 + 1 x ) 8 \left(1 - 2x^{3} + 3x^{5}\right)\left(1 + \frac{1}{x}\right)^{8}


The answer is 154.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 20, 2014

f ( x ) = ( 1 2 x 3 + 3 x 5 ) ( 1 + 1 x ) 8 = ( 1 2 x 3 + 3 x 5 ) n = 0 8 ( 8 n ) x n f(x) = (1-2x^3+3x^5)(1+\frac {1}{x})^8 = (1-2x^3+3x^5) \sum _{n=0} ^8 {\begin{pmatrix} 8 \\ n \end{pmatrix}x^{-n}}

f ( x ) = ( 1 2 x 3 + 3 x 5 ) × \Rightarrow f(x) =(1-2x^3+3x^5)\times ( 1 + 8 x 1 + 28 x 2 + 56 x 3 + 70 x 4 + 56 x 5 + 28 x 6 + 8 x 7 + x 8 ) \quad \quad (1+8x^{-1}+28x^{-2}+56x^{-3}+70x^{-4}+56x^{-5} +28x^{-6} + 8x^{-7} +x^{-8})

The coefficient of x x , a 1 a_1 , comes from 2 x 3 × 28 x 2 = 56 x -2x^3 \times 28x^{-2} = -56x and 3 x 5 × 70 x 4 = 210 x 3x^5 \times 70x^{-4} = 210x , therefore, a 1 = 56 + 210 = 154 a_1 = -56+210 = \boxed {154} .

I used Pascal's triangle to get the coefficients which is the same as the combinations you did. How did you compute the coefficients? By calculator or a by the combination formula? I realize the Pascal's triangle is inefficient when it gets large... Just curious what you did...

Scott Immel - 6 years, 6 months ago

Log in to reply

Scott, the coefficient is given by ( 8 n ) \begin{pmatrix} 8 \\ n \end{pmatrix} as mentioned in the solution. ( n r ) \begin{pmatrix} n \\ r \end{pmatrix} (notice I have swapped the place of n n ) is the combination function. Sometimes written as n C r ^n C _r or C r n C_r^n . And it is defined as:

( n r ) = n ! r ! ( n r ) ! \begin{pmatrix} n \\ r \end{pmatrix} = \frac {n!} {r!(n-r)!}

So, we note that ( n r ) \begin{pmatrix} n \\ r \end{pmatrix} = ( n n r ) \begin{pmatrix} n \\ n-r \end{pmatrix} . That is why the coefficients of power functions are symmetrical.

( n r ) = n ! r ! ( n r ) ! = n ( n 1 ) ( n 2 ) . . . ( n r + 1 ) 1 × 2 × 3 × . . . r \begin{pmatrix} n \\ r \end{pmatrix} = \dfrac {n!} {r!(n-r)!} = \dfrac {n(n-1)(n-2)...(n-r+1)} {1\times 2\times 3\times ...r}

Therefore,

( 8 0 ) = ( 8 8 ) = 1 \begin{pmatrix} 8 \\ 0 \end{pmatrix} = \begin{pmatrix} 8 \\ 8 \end{pmatrix} = 1 -- ( n 0 ) \begin{pmatrix} n \\ 0 \end{pmatrix} is defined as 1 1 .

( 8 1 ) = ( 8 7 ) = 8 1 = 8 \begin{pmatrix} 8 \\ 1 \end{pmatrix} = \begin{pmatrix} 8 \\ 7 \end{pmatrix} = \dfrac {8}{1} = 8

( 8 2 ) = ( 8 6 ) = 8 × 7 1 × 2 = 28 \begin{pmatrix} 8 \\ 2 \end{pmatrix} = \begin{pmatrix} 8 \\ 6 \end{pmatrix} = \dfrac {8\times 7}{1\times 2} = 28

( 8 3 ) = ( 8 5 ) = 8 × 7 × 6 1 × 2 × 3 = 56 \begin{pmatrix} 8 \\ 3 \end{pmatrix} = \begin{pmatrix} 8 \\ 5 \end{pmatrix} = \dfrac {8\times 7\times 6}{1\times 2\times 3} = 56

( 8 4 ) = 8 × 7 × 6 × 5 1 × 2 × 3 × 4 = 70 \begin{pmatrix} 8 \\ 4 \end{pmatrix} = \dfrac {8\times 7\times 6\times 5}{1\times 2\times 3\times 4} = 70

If you are using Microsoft Excel spreadsheet, the function is = C O M B ( n , r ) =COMB(n,r) .

Chew-Seong Cheong - 6 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...