A brilliant sum

Calculus Level 5

α = b = 1 ( r = 1 ( i = 1 ( l = 1 ( a = 1 ( n = 1 ( t = 1 ( 1 x b + r + i + l + l + i + a + n + t ) ) ) ) ) ) ) \alpha= \displaystyle \sum_{b=1}^{\infty}\left(\displaystyle \sum_{r=1}^{\infty}\left(\displaystyle \sum_{i=1}^{\infty}\left(\displaystyle \sum_{l=1}^{\infty}\left(\displaystyle \sum_{a=1}^{\infty}\left(\displaystyle \sum_{n=1}^{\infty}\left(\displaystyle \sum_{t=1}^{\infty}\left(\dfrac{1}{x^{b+r+i+l+l+i+a+n+t}}\right)\right)\right)\right)\right)\right)\right)

If α = 1 ( x + a ) b ( x + c ) d \alpha=\dfrac{1}{(x+a)^b(x+c)^d} find a + b + c + d |a|+|b|+|c|+|d|


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Jun 11, 2016

j = 1 1 x j = 1 x 1 ( where j = b , r , a , n , t ) \large\sum_{j=1}^\infty \frac{1}{x^j}=\frac{1}{x-1} \\ (\text{where}~j=b,r,a,n,t) i = 1 1 x 2 i = l = 1 1 x 2 l = 1 x 2 1 = 1 ( x 1 ) ( x + 1 ) \begin{aligned}\sum_{i=1}^{\infty} \frac{1}{x^{2i}} = \sum_{l=1}^{\infty} \frac{1}{x^{2l}} =&\frac{1}{x^2-1}\\=& \dfrac1{(x-1)(x+1)}\end{aligned} Hence,

α = ( 1 x 1 ) 5 ( 1 ( x 1 ) ( x + 1 ) ) 2 = 1 ( x 1 ) 7 ( x + 1 ) 2 \begin{aligned} \alpha=&\left(\dfrac1{x-1}\right)^5\left(\dfrac1{(x-1)(x+1)}\right)^2\\ =&\dfrac{1}{(x-1)^7(x+1)^2}\end{aligned}

1 + 7 + 1 + 2 = 11 \large 1+7+1+2=\boxed{\color{#D61F06}{11}}

Very nice solution and very simple.

You could simplify it just a bit by removing some of the summations from the top and replacing the b with some abstract letter like j.

b = 1 1 x b = r = 1 1 x r = a = 1 1 x a = n = 1 1 x n = t = 1 1 x t = 1 x 1 \sum_{b=1}^\infty \frac{1}{x^b}=\sum_{r=1}^\infty \frac{1}{x^r}=\sum_{a=1}^\infty \frac{1}{x^a}=\sum_{n=1}^\infty \frac{1}{x^n}=\sum_{t=1}^\infty \frac{1}{x^t}=\frac{1}{x-1}

Can just be

j = 1 1 x j = 1 x 1 \sum_{j=1}^\infty \frac{1}{x^j}=\frac{1}{x-1}

Trevor Arashiro - 5 years ago

Log in to reply

Done.... Thanks.. :-)

Rishabh Jain - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...