A calculus problem about statistics

The random variable ( X , Y ) (X, Y) has a density function : f ( x , y ) = { k y e x if 0 < x < y < 2 x 0 for all other points f(x,y) = \begin{cases} kye^{-x} & \text {if } 0 < x < y < 2x \\ 0 & \text {for all other points} \end{cases}

Find k k

Submit 2000 k \lfloor 2000k \rfloor .

Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 666.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

1 = R 2 f ( x , y ) d x d y = 0 x 2 x k y e x d y d x = 1 = \displaystyle \int \int_{\mathbb{R}^2} f(x,y) dx \space dy = \int_0^{\infty} \int_x^{2x} kye^{-x} dy \space dx = = k 0 e x [ y 2 2 ] x 2 x d x = 3 k 2 0 x 2 e x d x = 3 k 2 Γ [ 3 ] = 3 k = k\cdot \int_0^{\infty} e^{-x}\left[\frac{y^2}{2}\right]_x^{2x} dx = \frac{3k}{2}\cdot \int_0^{\infty} x^2\cdot e^{-x} dx = \frac{3k}{2}\cdot \Gamma[3] = 3k \Rightarrow ( Γ [ 3 ] = 2 ! = 2 \color{#D61F06}{\Gamma[3] = 2! = 2} ) 1 = 3 k k = 1 3 2000 k = 666 1 = 3k \Rightarrow k = \frac{1}{3} \Rightarrow \lfloor 2000k \rfloor = 666

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...