Consider the two functions and . If the function whose domain is all real numbers, and it satisfies the equation above, how many real roots of exist on the interval ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
h ( x ) = ∫ g ( x ) g ( x + 1 ) sin ( π x ) d t = [ − π cos ( π x ) ] x ( x + 1 ) ( x + 1 ) ( x + 2 ) = π 1 ( cos ( [ x 2 + x ] π ) − cos ( [ x 2 + 3 x + 2 ] π ) ) = π 1 ( cos ( [ x 2 + x ] π ) − cos ( [ x 2 + 3 x ] π ) ) = π 1 ( cos ( [ x 2 + x ] π ) − cos ( [ x 2 + x + 2 x ] π ) ) = π 1 ( cos ( [ x 2 + x ] π ) − cos ( [ x 2 + x ] π ) cos ( 2 x π ) + sin ( [ x 2 + x ] π ) sin ( 2 x π ) ) = π 1 ( cos ( [ x 2 + x ] π ) ( 1 − 2 cos 2 ( 2 x π ) + 1 ) + 2 sin ( [ x 2 + x ] π ) sin ( x π ) cos ( x π ) ) = π 1 ( 2 cos ( [ x 2 + x ] π ) sin 2 ( x π ) + 2 sin ( [ x 2 + x ] π ) sin ( x π ) cos ( x π ) ) = π 2 sin ( x π ) ( cos ( [ x 2 + x ] π ) sin ( x π ) + sin ( [ x 2 + x ] π ) cos ( x π ) ) = π 2 sin ( x π ) ( cos ( [ x 2 + x ] π ) sin ( x π ) + sin ( [ x 2 + x ] π ) cos ( x π ) ) = π 2 sin ( x π ) sin ( [ x 2 + 2 x ] π )
⇒ h ( x ) = 0 ⇒ { sin ( x π ) = 0 sin ( [ x 2 + 2 x ] π ) = 0 ⇒ x = − 1 , 0 , 1 ⇒ x 2 + 2 x = n . . . ( ∗ ) where n is an integer
( ∗ ) : x 2 + 2 x − n x = 0 = 2 − 2 ± 4 + 4 n = − 1 + 1 + n − 1 − 1 + n ≤ − 1 out of range = ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ − 1 0 2 − 1 = 0 . 4 1 4 2 3 − 1 = 0 . 7 3 2 1 1 for n = − 1 for n = 0 for n = 1 for n = 2 for n = 3
Therefore, h ( x ) has 5 real roots ∈ [ − 1 , 1 ] .