A calculus problem by 승원 진

Calculus Level 5

h ( x ) = g ( x ) g ( x + 1 ) f ( t ) d t \large h(x) = \int_{g(x)}^{g(x+1)} f(t) \, dt

Consider the two functions f ( x ) = sin ( π x ) f(x) = \sin(\pi x) and g ( x ) = x ( x + 1 ) g(x) = x(x+1) . If the function h ( x ) h(x) whose domain is all real numbers, and it satisfies the equation above, how many real roots of h ( x ) = 0 h(x) =0 exist on the interval [ 1 , 1 ] [-1,1] ?

1 4 2 5 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Feb 25, 2016

h ( x ) = g ( x ) g ( x + 1 ) sin ( π x ) d t = [ cos ( π x ) π ] x ( x + 1 ) ( x + 1 ) ( x + 2 ) = 1 π ( cos ( [ x 2 + x ] π ) cos ( [ x 2 + 3 x + 2 ] π ) ) = 1 π ( cos ( [ x 2 + x ] π ) cos ( [ x 2 + 3 x ] π ) ) = 1 π ( cos ( [ x 2 + x ] π ) cos ( [ x 2 + x + 2 x ] π ) ) = 1 π ( cos ( [ x 2 + x ] π ) cos ( [ x 2 + x ] π ) cos ( 2 x π ) + sin ( [ x 2 + x ] π ) sin ( 2 x π ) ) = 1 π ( cos ( [ x 2 + x ] π ) ( 1 2 cos 2 ( 2 x π ) + 1 ) + 2 sin ( [ x 2 + x ] π ) sin ( x π ) cos ( x π ) ) = 1 π ( 2 cos ( [ x 2 + x ] π ) sin 2 ( x π ) + 2 sin ( [ x 2 + x ] π ) sin ( x π ) cos ( x π ) ) = 2 π sin ( x π ) ( cos ( [ x 2 + x ] π ) sin ( x π ) + sin ( [ x 2 + x ] π ) cos ( x π ) ) = 2 π sin ( x π ) ( cos ( [ x 2 + x ] π ) sin ( x π ) + sin ( [ x 2 + x ] π ) cos ( x π ) ) = 2 π sin ( x π ) sin ( [ x 2 + 2 x ] π ) \begin{aligned} h(x) & = \int_{g(x)}^{g(x+1)} \sin (\pi x) \space dt \\ & = \left[ -\frac{\cos (\pi x)}{\pi} \right] _{x(x+1)}^{(x+1)(x+2)} \\ & = \frac{1}{\pi}\left(\cos ([x^2+x]\pi) - \cos ([x^2+3x+2]\pi)\right) \\ & = \frac{1}{\pi} \left( \cos ([x^2+x]\pi) - \cos ([x^2+3x]\pi)\right) \\ & = \frac{1}{\pi} \left( \cos ([x^2+x]\pi) - \cos ([x^2+x+2x]\pi) \right) \\ & = \frac{1}{\pi} \left( \cos ([x^2+x]\pi) - \cos ([x^2+x]\pi) \cos (2x\pi) + \sin ([x^2+x]\pi) \sin (2x\pi) \right) \\ & = \frac{1}{\pi} \left( \cos ([x^2+x]\pi) (1 - 2 \cos^2 (2x\pi) + 1) + 2 \sin ([x^2+x]\pi) \sin (x\pi) \cos (x\pi) \right) \\ & = \frac{1}{\pi} \left(2\cos ([x^2+x]\pi)\sin^2 (x\pi) + 2 \sin ([x^2+x]\pi) \sin (x\pi) \cos (x\pi) \right) \\ & = \frac{2}{\pi} \sin (x \pi) \left(\cos ([x^2+x]\pi)\sin (x\pi) + \sin ([x^2+x]\pi) \cos (x\pi) \right) \\ & = \frac{2}{\pi} \sin (x \pi) \left(\cos ([x^2+x]\pi)\sin (x\pi) + \sin ([x^2+x]\pi) \cos (x\pi) \right) \\ & = \frac{2}{\pi} \sin (x \pi) \sin ([x^2+2x]\pi) \end{aligned}

h ( x ) = 0 { sin ( x π ) = 0 x = 1 , 0 , 1 sin ( [ x 2 + 2 x ] π ) = 0 x 2 + 2 x = n . . . ( ) where n is an integer \Rightarrow h(x) = 0 \quad \Rightarrow \begin{cases} \sin (x\pi) = 0 & \Rightarrow x = -1, 0, 1 \\ \sin ([x^2+2x] \pi) = 0 & \Rightarrow x^2 + 2x = n \quad ...(*) \quad \text{where } n \text{ is an integer} \end{cases}

( ) : x 2 + 2 x n = 0 x = 2 ± 4 + 4 n 2 = 1 + 1 + n 1 1 + n 1 out of range = { 1 for n = 1 0 for n = 0 2 1 = 0.4142 for n = 1 3 1 = 0.7321 for n = 2 1 for n = 3 \begin{aligned} (*): \quad x^2 + 2x - n & = 0 \\ x & = \frac{-2 \pm \sqrt{4+4n}}{2} \\ & = -1 + \sqrt{1+n} \quad \quad \small \color{#3D99F6}{-1 - \sqrt{1+n} \le -1 \text{ out of range}} \\ & = \begin{cases} -1 & \text{for } n = -1 \\ 0 & \text{for } n = 0 \\ \sqrt{2} - 1 = 0.4142 & \text{for } n = 1 \\ \sqrt{3} - 1 = 0.7321 & \text{for } n = 2 \\ 1 & \text{for } n = 3 \end{cases} \end{aligned}

Therefore, h ( x ) h(x) has 5 \boxed{5} real roots [ 1 , 1 ] \in [-1,1] .

same method!

Hamza A - 5 years, 3 months ago

Log in to reply

@Chew-Seong Cheong @Hummus a Same here!!! First I was about to check for the extrema points without actually finding the actual roots.....Then I did it like this.....!!

Aaghaz Mahajan - 3 years, 3 months ago

Another way of approaching this question is utilizing the property cos((2 n pi)-x)=cos(x) [for n is a natural number]; since after obtaining the definite integral we will have cos(x (x+1) pi) = cos((x+1) (x+2) pi) because as the question have mentioned we need to find the roots of h(x), so h(x)=0.

Keith Howen - 11 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...