Relations and Functions

Algebra Level 3

{ x 2 + y = 12 y 2 + x = 12 \large \begin{cases} x^2+y=12 \\ y^2+x=12 \end{cases}

Find the number of ordered pairs ( x , y ) (x,y) satisfying the system of equations above.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sándor Daróczi
Jun 23, 2017

x 2 + y = y 2 + x x^2+y=y^2+x

x 2 y 2 = x y x^2-y^2=x-y

( x y ) ( x + y ) = x y (x-y)(x+y)=x-y

( x y ) ( x + y 1 ) = 0 (x-y)(x+y-1)=0

Case 1: x = y x=y

x 2 + x = 12 x^2+x=12

x 2 + x 12 = 0 y = x = 3 x^2+x-12=0 \Rightarrow y=x=3 or y = x = 4 y=x=-4

Case 2: x + y = 1 x+y=1

24 = x 2 + y 2 + x + y = ( x + y ) 2 2 x y + x + y = 1 2 2 x y + 1 = 2 2 x y x y = 11 24=x^2+y^2+x+y=(x+y)^2-2xy+x+y=1^2-2xy+1=2-2xy \Rightarrow xy = -11

So by Vieta's formulas x and y are the roots of the quadratic equation x 2 x 11 = 0 x = 1 + 3 5 2 x^2-x-11=0 \Rightarrow x=\frac {1+3\sqrt{5}}{2} and y = 1 3 5 2 y=\frac {1-3\sqrt{5}}{2} or x = 1 3 5 2 x=\frac {1-3\sqrt{5}}{2} and y = 1 + 3 5 2 y=\frac {1+3\sqrt{5}}{2} .

In summary we have

x 1 = y 1 = 3 x_1=y_1=3

x 2 = y 2 = 4 x_2=y_2=-4

x 3 = 1 + 3 5 2 x_3=\frac {1+3\sqrt{5}}{2} , y 3 = 1 3 5 2 y_3=\frac {1-3\sqrt{5}}{2}

x 4 = 1 3 5 2 x_4=\frac {1-3\sqrt{5}}{2} , y 4 = 1 + 3 5 2 y_4=\frac {1+3\sqrt{5}}{2}

So the answer is 4.

What is Vieta's Formula

Aakhyat Singh - 3 years, 11 months ago
Marta Reece
Jun 23, 2017

y = 12 x 2 y=12-x^2

( 12 x 2 ) 2 + x = 12 (12-x^2)^2+x=12

Solutions: x = 3 , x = 4 , x = 1 2 ( 1 + 3 5 ) , x = 1 2 ( 1 3 5 ) x=3, x=-4, x=\frac12(1+3\sqrt5), x=\frac12(1-3\sqrt5)

Corresponding y y 's: y = 3 , y = 4 , y = 1 2 ( 1 3 5 ) , y = 1 2 ( 1 + 3 5 ) y=3, y=-4, y=\frac12(1-3\sqrt5), y=\frac12(1+-3\sqrt5)

Chew-Seong Cheong
Jun 25, 2017

Relevant wiki: Rational Root Theorem - Basic

{ x 2 + y = 12 . . . ( 1 ) y 2 + x = 12 . . . ( 2 ) \begin{cases} x^2 + y = 12 & ...(1) \\ y^2 + x = 12 & ...(2) \end{cases}

From (1): y = 12 x 2 \quad y = 12 - x^2

From (2):

( 12 x 2 ) 2 + x = 12 x 4 24 x 2 + x + 132 = 0 Using rational root theorem, x = 4 , 3 ( x + 4 ) ( x 3 ) ( x 2 x 11 ) = 0 ( x + 4 ) ( x 3 ) ( x 1 3 5 2 ) ( x 1 + 3 5 2 ) = 0 \begin{aligned} \left(12-x^2\right)^2 + x & = 12 \\ x^4 -24x^2 + x + 132 & = 0 & \small \color{#3D99F6} \text{Using rational root theorem, }x = -4, 3 \\ (x+4)(x-3)(x^2 - x -11) & = 0 \\ (x+4)(x-3)\left(x-\frac {1-3\sqrt 5}2\right)\left(x-\frac {1+3\sqrt 5}2\right) & = 0 \end{aligned}

Since there are 4 roots for x x , there are 4 \boxed{4} ordered pairs ( x , y ) (x,y) and they are:

{ x = 4 y = 4 x = 3 y = 3 x = 1 3 5 2 y = 1 + 3 5 2 x = 1 + 3 5 2 y = 1 3 5 2 \begin{cases} x = - 4 & y = - 4 \\ x = 3 & y = 3 \\ x = \frac {1-3\sqrt 5}2 & y = \frac {1+3\sqrt 5}2 \\ x = \frac {1+3\sqrt 5}2 & y = \frac {1-3\sqrt 5}2 \end{cases}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...