⎩ ⎨ ⎧ x 2 + y = 1 2 y 2 + x = 1 2
Find the number of ordered pairs ( x , y ) satisfying the system of equations above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
What is Vieta's Formula
y = 1 2 − x 2
( 1 2 − x 2 ) 2 + x = 1 2
Solutions: x = 3 , x = − 4 , x = 2 1 ( 1 + 3 5 ) , x = 2 1 ( 1 − 3 5 )
Corresponding y 's: y = 3 , y = − 4 , y = 2 1 ( 1 − 3 5 ) , y = 2 1 ( 1 + − 3 5 )
Relevant wiki: Rational Root Theorem - Basic
{ x 2 + y = 1 2 y 2 + x = 1 2 . . . ( 1 ) . . . ( 2 )
From (1): y = 1 2 − x 2
From (2):
( 1 2 − x 2 ) 2 + x x 4 − 2 4 x 2 + x + 1 3 2 ( x + 4 ) ( x − 3 ) ( x 2 − x − 1 1 ) ( x + 4 ) ( x − 3 ) ( x − 2 1 − 3 5 ) ( x − 2 1 + 3 5 ) = 1 2 = 0 = 0 = 0 Using rational root theorem, x = − 4 , 3
Since there are 4 roots for x , there are 4 ordered pairs ( x , y ) and they are:
⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ x = − 4 x = 3 x = 2 1 − 3 5 x = 2 1 + 3 5 y = − 4 y = 3 y = 2 1 + 3 5 y = 2 1 − 3 5
Problem Loading...
Note Loading...
Set Loading...
x 2 + y = y 2 + x
x 2 − y 2 = x − y
( x − y ) ( x + y ) = x − y
( x − y ) ( x + y − 1 ) = 0
Case 1: x = y
x 2 + x = 1 2
x 2 + x − 1 2 = 0 ⇒ y = x = 3 or y = x = − 4
Case 2: x + y = 1
2 4 = x 2 + y 2 + x + y = ( x + y ) 2 − 2 x y + x + y = 1 2 − 2 x y + 1 = 2 − 2 x y ⇒ x y = − 1 1
So by Vieta's formulas x and y are the roots of the quadratic equation x 2 − x − 1 1 = 0 ⇒ x = 2 1 + 3 5 and y = 2 1 − 3 5 or x = 2 1 − 3 5 and y = 2 1 + 3 5 .
In summary we have
x 1 = y 1 = 3
x 2 = y 2 = − 4
x 3 = 2 1 + 3 5 , y 3 = 2 1 − 3 5
x 4 = 2 1 − 3 5 , y 4 = 2 1 + 3 5
So the answer is 4.