A calculus problem by Akeel Howell

Calculus Level 3

0 π x 4 sin x d x = π a b π c + d \large \int_0^\pi x^4\sin x \ dx = \pi^a-b\pi^c+d

The integral above holds true for integers a a , b b , c c and d d . Find a + b + c + d a+b+c+d .


The answer is 66.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I = 0 π x 4 sin x d x By integration by parts = x 4 cos x 0 π + 0 π 4 x 3 cos x d x By IBP again = π 4 + 4 x 3 sin x 0 π 0 π 12 x 2 sin x d x By IBP again = π 4 + 0 + 12 x 2 cos x 0 π 0 π 24 x cos x d x By IBP again = π 4 12 π 2 24 x sin x 0 π + 0 π 24 sin x d x By IBP again = π 4 12 π 2 24 cos x 0 π = π 4 12 π 2 + 48 \begin{aligned} I & = \int_0^\pi x^4 \sin x \ dx & \small \color{#3D99F6} \text{By integration by parts} \\ & = -x^4 \cos x \bigg|_0^\pi + \int_0^\pi 4 x^3 \cos x \ dx & \small \color{#3D99F6} \text{By IBP again} \\ & = \pi^4 + 4x^3 \sin x \bigg|_0^\pi - \int_0^\pi 12 x^2 \sin x \ dx & \small \color{#3D99F6} \text{By IBP again} \\ & = \pi^4 + 0 + 12x^2 \cos x \bigg|_0^\pi - \int_0^\pi 24 x \cos x \ dx & \small \color{#3D99F6} \text{By IBP again} \\ & = \pi^4 - 12\pi^2 - 24 x \sin x \bigg|_0^\pi + \int_0^\pi 24 \sin x \ dx & \small \color{#3D99F6} \text{By IBP again} \\ & = \pi^4 - 12\pi^2 - 24 \cos x \bigg|_0^\pi \\ & = \pi^4 - 12\pi^2 + 48 \end{aligned}

a + b + c + d = 4 + 12 + 2 + 48 = 66 \implies a+b+c+d = 4+12+2+48 = \boxed{66}

Tom Engelsman
Feb 9, 2017

Using a repeated sequence of integration-by-parts, we obtain:

x 4 c o s ( x ) + 4 x 3 s i n ( x ) 12 x 2 c o s ( x ) + 24 x s i n ( x ) 24 c o s ( x ) -x^{4}cos(x) + 4x^{3}sin(x) - 12x^{2}cos(x) + 24xsin(x) - 24cos(x)

which evaluating the bounds x = 0 , π x = 0, \pi gives:

π 4 12 π 2 + 48 a = 4 , b = 12 , c = 2 , d = 48 a + b + c + d = 66 . \pi^{4} - 12\pi^{2} + 48 \Rightarrow a = 4, b = 12, c = 2, d = 48 \Rightarrow a + b + c + d = \boxed{66}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...