Should we integrate by parts?

Calculus Level 4

0 π / 2 sin 1000 θ d θ = π 2 a ! 2 a ( b ! ) 2 \large \int_0^{\pi/2} \sin^{1000} \theta \ d\theta = \frac \pi 2 \cdot \frac {a!}{2^a(b!)^2} Find a + b a+b .


The answer is 1500.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Tapas Mazumdar
Mar 31, 2017

References:


From the definition of the beta function

B ( m , n ) = 2 0 π / 2 sin 2 m 1 θ cos 2 n 1 θ = Γ ( m ) Γ ( n ) Γ ( m + n ) B(m,n) = \displaystyle 2 \int_0^{{\pi}/{2}} \sin^{2m-1} \theta \cos^{2n-1} \theta \ \operatorname{d\theta} = \dfrac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}

By comparison, we get our integral as

1 2 B ( 1001 2 , 1 2 ) = 1 2 Γ ( 1001 2 ) Γ ( 1 2 ) Γ ( 501 ) = 1 2 n = 2 500 ( 2 n 1 ) 1 2 499 Γ 2 ( 1 2 ) ( 500 ) ! = π 2 m = 1 1000 m 2 1000 ( 500 ) ! ( 500 ! ) = π 2 ( 1000 ) ! 2 1000 ( 500 ) ! 2 \begin{aligned} \dfrac 12 \cdot B \left( \dfrac{1001}{2} , \dfrac{1}{2} \right) &= \dfrac 12 \cdot \dfrac{\Gamma \left(\frac{1001}{2}\right) \Gamma \left(\frac{1}{2}\right)}{\Gamma(501)} \\ &= \dfrac 12 \cdot \dfrac{\displaystyle \prod_{n=2}^{500} (2n-1) \cdot \frac{1}{2^{499}} \cdot \Gamma^2 \left( \frac 12 \right)}{(500)!} \\ &= \dfrac{\pi}{2} \cdot \dfrac{\displaystyle \prod_{m=1}^{1000} m}{2^{1000} \cdot (500)! \cdot (500!)} \\ &= \dfrac{\pi}{2} \cdot \dfrac{(1000)!}{2^{1000} {(500)!}^2} \end{aligned}

a + b = 1000 + 500 = 1500 \implies a+b = 1000+500 = \boxed{1500}

Chew-Seong Cheong
Mar 31, 2017

Similar solution to Tapas Muzumdar 's

I = 0 π 2 sin 1000 θ d θ = 0 π 2 sin 1000 θ cos 0 θ d θ = 1 2 B ( 1001 2 , 1 2 ) B ( m , n ) is beta function. = 1 2 Γ ( 1001 2 ) Γ ( 1 2 ) Γ ( 501 ) Γ ( s ) is gamma function. = 1 2 999 ! ! 2 500 π π 500 ! = π 2 1000 ! 2 1000 ( 500 ! ) 2 \begin{aligned} I & = \int_0^\frac \pi 2 \sin^{1000} \theta \ d\theta \\ & = \int_0^\frac \pi 2 \sin^{1000} \theta \cos^0 \theta \ d\theta \\ & = \frac 12 B\left(\frac {1001}2, \frac 12 \right) & \small \color{#3D99F6} B(m,n) \text{ is beta function.} \\ & = \frac 12 \cdot \frac {\Gamma \left(\frac {1001}2 \right) \Gamma \left(\frac 12 \right)}{\Gamma \left(501\right)} & \small \color{#3D99F6} \Gamma(s) \text{ is gamma function.} \\ & = \frac 12 \cdot \frac {\frac {999!!}{2^{500}} \sqrt \pi \cdot \sqrt \pi}{500!} \\ & = \frac \pi 2 \cdot \frac {1000!}{2^{1000}(500!)^2} \end{aligned}

a + b = 1000 + 500 = 1500 \implies a + b = 1000 + 500 = \boxed{1500}


Reference

The given integral is a form of the Wallis' integrals discovered by the mathematician John Wallis. We can easily obtain a recurrence relation on the general integral for even numbers and obtain the values of a and b

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...