A calculus problem by Akshat Sharda

Calculus Level 4

0 2 π 15 sin x + cos x d x \large \int^{2\pi}_{0} \bigg|\sqrt{15}\sin x +\cos x \bigg| \, dx

Find the value of above integral.


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 14, 2017

I = 0 2 π 15 sin x + cos x d x = 0 2 π 4 sin ( x + ϕ ) d x where ϕ = tan 1 1 15 = ϕ 2 π + ϕ 4 sin θ d θ Let θ = x + ϕ d θ = d x = 4 0 2 π sin θ d θ See note. = 8 0 π sin θ d θ = 8 [ cos θ ] 0 π = 16 \begin{aligned} I & = \int_0^{2 \pi} \bigg|\sqrt{15}\sin x + \cos x \bigg| dx \\ & = \int_0^{2 \pi} \bigg|4\sin {\color{#3D99F6}(x + \phi)} \bigg| dx & \small \color{#3D99F6} \text{where }\phi = \tan^{-1} \frac 1{\sqrt{15}} \\ & = \int_\phi^{2 \pi+\phi} \bigg|4\sin {\color{#3D99F6}\theta} \bigg| d\theta & \small \color{#3D99F6} \text{Let }\theta = x + \phi \implies d \theta = dx \\ & = 4 \int_{\color{#3D99F6}0}^{\color{#3D99F6}2\pi} |\sin \theta| \ d\theta & \small \color{#3D99F6} \text{See note.} \\ & = {\color{#D61F06}8} \int_{\color{#D61F06}0}^{\color{#D61F06}\pi} \sin \theta \ d\theta \\ & = 8 \bigg[-\cos \theta \bigg]_0^\pi \\ & = \boxed{16} \end{aligned}


Note:

ϕ 2 π + ϕ sin θ d θ = ϕ π sin θ d θ π 2 π sin θ d θ + 2 π 2 π + ϕ sin θ d θ = ϕ π sin θ d θ π 2 π sin θ d θ + 0 ϕ sin θ d θ = 0 π sin θ d θ π 2 π sin θ d θ = 0 2 π sin θ d θ \begin{aligned} \int_\phi^{2\pi + \phi} |\sin \theta| \ d\theta & = \int_\phi^\pi \sin \theta \ d \theta - \int_\pi^{2\pi} \sin \theta \ d \theta + \int_{2\pi}^{2\pi+\phi} \sin \theta \ d \theta \\ & = {\color{#3D99F6} \int_\phi^\pi \sin \theta \ d \theta} - \int_\pi^{2\pi} \sin \theta \ d \theta + {\color{#3D99F6} \int_{\color{#D61F06}0}^{\color{#D61F06}\phi} \sin \theta \ d \theta} \\ & = {\color{#3D99F6} \int_{\color{#D61F06}0}^\pi \sin \theta \ d \theta} - \int_\pi^{2\pi} \sin \theta \ d \theta \\ & = \int_0^{2\pi} |\sin \theta| \ d \theta \end{aligned}

Here, ϕ 2 π + ϕ 4 sin x d x \int^{2\pi+\phi}_{\phi}|4\sin x|dx is same as 0 2 π 4 sin x d x \int^{2\pi}_{0}|4\sin x|dx which is itself equal to 16 16 .

Akshat Sharda - 3 years, 10 months ago

Log in to reply

Yes, you are right/

Chew-Seong Cheong - 3 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...