A calculus problem by Akshat Sharda

Calculus Level 5

For k R { 1 } k\in \mathbb{R}-\{-1\} , lim n ( n + 1 ) 1 k j = 1 n j k j = 1 n ( n k + j ) = 1 60 \displaystyle \lim_{n\to \infty} \dfrac{ (n+1)^{1-k} \displaystyle \sum^{n}_{j=1} j^k}{\displaystyle \sum^{n}_{j=1} (nk+j)}=\dfrac{1}{60}

Find k k .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Guilherme Niedu
Sep 11, 2017

Assuming k k as a positive integer, one can write:

1 k + 1 = ( 0 + 1 ) k + 1 = C k + 1 0 0 k + 1 + C k + 1 1 0 k 1 + C k + 1 2 0 k 1 1 2 + . . . + C k + 1 k + 1 1 k + 1 \large \displaystyle 1^{k+1} = (0+1)^{k+1} = C_{k+1}^0 \cdot 0^{k+1} + C_{k+1}^1 \cdot 0^k \cdot 1 + C_{k+1}^2 \cdot 0^{k-1} \cdot 1^2 + ... + C_{k+1}^{k+1} \cdot 1^{k+1}

2 k + 1 = ( 1 + 1 ) k + 1 = C k + 1 0 1 k + 1 + C k + 1 1 1 k 1 + C k + 1 2 1 k 1 1 2 + . . . + C k + 1 k + 1 1 k + 1 \large \displaystyle 2^{k+1} = (1+1)^{k+1} = C_{k+1}^0 \cdot 1^{k+1} + C_{k+1}^1 \cdot 1^k \cdot 1 + C_{k+1}^2 \cdot 1^{k-1} \cdot 1^2 + ... + C_{k+1}^{k+1} \cdot 1^{k+1}

3 k + 1 = ( 2 + 1 ) k + 1 = C k + 1 0 0 k + 1 + C k + 1 1 2 k 1 + C k + 1 2 2 k 1 1 2 + . . . + C k + 1 k + 1 1 k + 1 \large \displaystyle 3^{k+1} = (2+1)^{k+1} = C_{k+1}^0 \cdot 0^{k+1} + C_{k+1}^1 \cdot 2^k \cdot 1 + C_{k+1}^2 \cdot 2^{k-1} \cdot 1^2 + ... + C_{k+1}^{k+1} \cdot 1^{k+1}

\large \displaystyle \vdots

( n + 1 ) k + 1 = C k + 1 0 n k + 1 + C k + 1 1 n k 1 + C k + 1 2 n k 1 1 2 + . . . + C k + 1 k + 1 1 k + 1 \large \displaystyle (n+1)^{k+1} = C_{k+1}^0 \cdot n^{k+1} + C_{k+1}^1 \cdot n^k \cdot 1 + C_{k+1}^2 \cdot n^{k-1} \cdot 1^2 + ... + C_{k+1}^{k+1} \cdot 1^{k+1}

Summing it all up, one ends up with:

( n + 1 ) k + 1 = ( k + 1 ) j = 1 n j k + O ( n k ) \large \displaystyle (n+1)^{k+1} = (k+1) \sum_{j=1}^{n} j^k + O(n^{k})

j = 1 n j k = ( n + 1 ) k + 1 k + 1 + O ( n k ) \color{#20A900} \boxed{ \large \displaystyle \sum_{j=1}^{n} j^k = \frac{(n+1)^{k+1}}{k+1} + O(n^{k}) }

So:

lim n ( n + 1 ) 1 k j = 1 n j k j = 1 n ( n k + j ) \large \displaystyle \lim_{n \rightarrow \infty} \frac{ (n+1)^{1-k} \sum_{j=1}^{n} j^k }{\sum_{j=1}^{n}(nk + j) }

= lim n ( n + 1 ) 1 k [ ( n + 1 ) k + 1 k + 1 + O ( n k ) ] n k j = 1 n 1 + j = 1 n j \large \displaystyle = \lim_{n \rightarrow \infty} \frac{ (n+1)^{1-k} \cdot \left [ \frac{(n+1)^{k+1}}{k+1} + O(n^{k}) \right ] }{nk\sum_{j=1}^{n}1+ \sum_{j=1}^{n}j }

Since n n goes to \infty :

= lim n ( n + 1 ) 1 k [ ( n + 1 ) k + 1 k + 1 ] n 2 k + n 2 + n 2 \large \displaystyle = \lim_{n \rightarrow \infty} \frac{ (n+1)^{1-k} \cdot \left [ \frac{(n+1)^{k+1}}{k+1} \right ] }{n^2 k + \frac{n^2 + n}{2} }

= lim n 2 n 2 + 4 n + 2 ( 2 k 2 + 3 k + 1 ) n 2 + ( k + 1 ) n \large \displaystyle = \lim_{n \rightarrow \infty} \frac{2n^2 + 4n + 2}{(2k^2 + 3k+ 1)n^2 + (k+1)n}

= 2 2 k 2 + 3 k + 1 \color{#20A900} \boxed{ \large \displaystyle = \frac{2}{2k^2 + 3k + 1} }

Since it equals 1 60 \frac{1}{60} :

2 k 2 + 3 k + 1 = 120 \large \displaystyle 2k^2 + 3k + 1 = 120

2 k 2 + 3 k 119 = 0 \large \displaystyle 2k^2 + 3k - 119 = 0

k = 7 \color{#20A900} \boxed{ \large \displaystyle k = 7} or k = 8.5 \color{#20A900} \boxed{ \large \displaystyle k = -8.5 }

Since we assumed k k as a positive integer:

k = 7 \color{#3D99F6} \boxed{ \large \displaystyle k = 7}

I think summation j^k = j^(k+1) / k+1 . Not j+1

Ram Sita - 2 years, 11 months ago
Akshay Yadav
Sep 7, 2017

Notice that lim n ( n + 1 ) 1 k j = 1 n j k j = 1 n ( n k + j ) \displaystyle \lim_{n\to \infty} \dfrac{ (n+1)^{1-k} \displaystyle \sum^{n}_{j=1} j^k}{\displaystyle \sum^{n}_{j=1} (nk+j)}

= lim n n k + 1 / ( n + 1 ) k 1 j = 1 n 1 / n ( j / n ) k n 2 [ j = 1 n 1 / n ( j / n ) ] + n 2 k =\displaystyle \lim_{n\to \infty} \dfrac{ n^{k+1}/(n+1)^{k-1} \displaystyle \sum^{n}_{j=1} 1/n( j/n)^k}{n^2 \left[ \displaystyle \sum^{n}_{j=1} 1/n(j/n) \right]+n^2k}

= 0 1 x k d x 0 1 x d x + k × lim n ( n / ( n + 1 ) ) k + 1 = 1 / 60 =\frac{\int^{1}_{0} x^kdx}{\int^{1}_{0}xdx + k} \times \lim_{n \to \infty} (n/(n+1))^{k+1}=1/60

According to your solution there would be two possible answers to this question: 7 and -17/2. Can you explain how we should exclude the negative value?

D G - 3 years, 9 months ago

You are awesome

Ram Sita - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...