A calculus problem by Akshat Sharda

Calculus Level 4

lim x 0 cos ( sin x ) cos x x 4 = a \lim_{x\rightarrow 0} \dfrac{\cos(\sin x)-\cos x}{x^4}=a

Find 1 a \dfrac{1}{a} .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Brian Moehring
Feb 20, 2017

By Maclaurin series: cos ( sin x ) = 1 1 2 sin 2 x + 1 24 sin 4 x + o ( x 4 ) = 1 1 2 ( x 1 6 x 3 + o ( x 3 ) ) 2 + 1 24 ( x + o ( x ) ) 4 + o ( x 4 ) = 1 1 2 ( x 1 6 x 3 ) 2 + 1 24 x 4 + o ( x 4 ) = 1 1 2 x 2 + 1 6 x 4 + 1 24 x 4 + o ( x 4 ) . \begin{aligned} \cos(\sin x) &= 1 - \frac{1}{2}\sin^2x + \frac{1}{24}\sin^4 x + o(x^4) \\ &= 1 - \frac{1}{2}\left(x - \frac{1}{6}x^3 + o(x^3)\right)^2 + \frac{1}{24}\big(x + o(x)\big)^4 + o(x^4) \\ &= 1 - \frac{1}{2}\left(x - \frac{1}{6}x^3\right)^2 + \frac{1}{24}x^4 + o(x^4) \\ &= 1 - \frac{1}{2}x^2 + \frac{1}{6}x^4 + \frac{1}{24}x^4 + o(x^4).\end{aligned}

Then subtracting cos x = 1 1 2 x 2 + 1 24 x 4 + o ( x 4 ) \cos x = 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + o(x^4) yields cos ( sin x ) cos x = 1 6 x 4 + o ( x 4 ) . \cos(\sin x) - \cos x = \frac{1}{6}x^4 + o(x^4).

Therefore, lim x 0 cos ( sin x ) cos x x 4 = lim x 0 1 6 x 4 + o ( x 4 ) x 4 = lim x 0 1 6 + o ( 1 ) = 1 6 . \lim_{x\rightarrow 0} \frac{\cos(\sin x) - \cos x}{x^4} = \lim_{x\rightarrow 0} \frac{\tfrac{1}{6}x^4 + o(x^4)}{x^4} = \lim_{x\rightarrow 0} \frac{1}{6} + o(1) = \frac{1}{6}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...