A calculus problem by Akshat Sharda

Calculus Level 4

lim x 0 sin 1 x tan 1 x ln ( 1 + x 3 ) = A \lim_{x\rightarrow 0} \dfrac{\sin^{-1} x -\tan^{-1} x}{\ln (1+x^{3} )} = A

Find the value of 1 A \dfrac{1}{A} .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

lim x 0 ( sin 1 x tan 1 x ) ln ( 1 + x 3 ) \displaystyle \large \lim_{x\rightarrow 0} \frac{\left(\sin ^{-1}x-\tan ^{-1}x\right)}{\ln \left(1+x^3\right)}

= lim x 0 ( sin 1 x tan 1 x ) x 3 x 3 ln ( 1 + x 3 ) \displaystyle \large = \lim_{x\rightarrow 0} \frac{\left(\sin ^{-1}x-\tan ^{-1}x\right)}{x^3}\cdot \frac{x^3}{\ln \left(1+x^3\right)}

= lim x 0 ( tan 1 ( x 1 x 2 ) tan 1 x ) x 3 1 \displaystyle \large = \lim_{x\rightarrow 0} \frac{\left(\tan ^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right)-\tan ^{-1}x\right)}{x^3}\cdot 1

= lim x 0 ( tan 1 ( x 1 x 2 x ) ( 1 + x 2 1 x 2 ) ) x 3 \displaystyle \large = \lim_{x\rightarrow 0} \frac{\left(\tan ^{-1}\frac{\left(\frac{x}{\sqrt{1-x^2}}-x\right)}{\left(1+\frac{x^2}{\sqrt{1-x^2}}\right)}\right)}{x^3}

= lim x 0 ( tan 1 ( ( x x 1 x 2 ) ( 1 x 2 + x 2 ) ) ) x 3 \displaystyle \large = \lim_{x\rightarrow 0} \frac{\left(\tan ^{-1}\left(\frac{\left(x-x\sqrt{1-x^2}\right)}{\left(\sqrt{1-x^2}+x^2\right)}\right)\right)}{x^3}

= lim x 0 ( tan 1 ( ( x x 1 x 2 ) ( 1 x 2 + x 2 ) ) ) ( x x 1 x 2 ) ( 1 x 2 + x 2 ) ( x x 1 x 2 ) ( 1 x 2 + x 2 ) x 3 \displaystyle \large = \lim_{x\rightarrow 0} \frac{\left(\tan ^{-1}\left(\frac{\left(x-x\sqrt{1-x^2}\right)}{\left(\sqrt{1-x^2}+x^2\right)}\right)\right)}{\frac{\left(x-x\sqrt{1-x^2}\right)}{\left(\sqrt{1-x^2}+x^2\right)}}\cdot \frac{\frac{\left(x-x\sqrt{1-x^2}\right)}{\left(\sqrt{1-x^2}+x^2\right)}}{x^3}

= lim x 0 1 ( x x 1 x 2 ) ( 1 x 2 + x 2 ) x 3 \displaystyle \large = \lim_{x\rightarrow 0} 1\cdot \frac{\frac{\left(x-x\sqrt{1-x^2}\right)}{\left(\sqrt{1-x^2}+x^2\right)}}{x^3}

= lim x 0 ( ( 1 1 x 2 ) ( 1 x 2 + x 2 ) ) x 2 \displaystyle \large = \lim_{x\rightarrow 0} \frac{\left(\frac{\left(1-\sqrt{1-x^2}\right)}{\left(\sqrt{1-x^2}+x^2\right)}\right)}{x^2}

= lim x 0 ( ( 1 1 x 2 ) ( 1 x 2 + x 2 ) ( 1 + 1 x 2 ) ( 1 + 1 x 2 ) ) x 2 \displaystyle \large = \lim_{x\rightarrow 0} \frac{\left(\frac{\left(1-\sqrt{1-x^2}\right)}{\left(\sqrt{1-x^2}+x^2\right)}\cdot \frac{\left(1+\sqrt{1-x^2}\right)}{\left(1+\sqrt{1-x^2}\right)}\right)}{x^2}

= lim x 0 ( x 2 ( 1 x 2 + x 2 ) ( 1 + 1 x 2 ) ) x 2 \displaystyle \large = \lim_{x\rightarrow 0} \frac{\left(\frac{x^2}{\left(\sqrt{1-x^2}+x^2\right)\left(1+\sqrt{1-x^2}\right)}\right)}{x^2}

= lim x 0 1 ( 1 x 2 + x 2 ) ( 1 + 1 x 2 ) \displaystyle \large = \lim_{x\rightarrow 0} \frac{1}{\left(\sqrt{1-x^2}+x^2\right)\left(1+\sqrt{1-x^2}\right)}

= 1 ( 1 0 2 + 0 2 ) ( 1 + 1 0 2 ) = 0.5 \displaystyle \large = \frac{1}{\left(\sqrt{1-0^2}+0^2\right)\left(1+\sqrt{1-0^2}\right)} = \boxed{0.5}

Shourya Pandey
Jun 10, 2017

We use the Taylor series for each term around 0 0 .

sin 1 x = x + x 3 6 + 3 x 5 40 + O ( x 6 ) \displaystyle\sin^{-1} x = x + \frac{x^3}{6} + \frac{3x^5}{40} + O(x^6)

tan 1 x = x x 3 3 + x 5 5 + O ( x 6 ) \displaystyle \tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} + O(x^6) , so that

sin 1 x tan 1 x = x 3 2 + O ( x 5 ) \displaystyle \sin^{-1} x - \tan^{-1} x = \frac{x^3}{2} + O(x^5) . Also ,

l n ( 1 + x 3 ) = x 3 x 6 2 + x 9 3 . . . . = x 3 + O ( x 6 ) \displaystyle ln(1+x^3) = x^3 - \frac{x^6}{2} + \frac{x^9}{3} - .... = x^3 + O(x^6) . It follows that

l i m x 0 sin 1 x tan 1 x l n ( 1 + x 3 ) = l i m x 0 x 3 2 + O ( x 5 ) x 3 + O ( x 6 ) = l i m x 0 1 2 + O ( x 2 ) 1 + O ( x 3 ) = 1 2 + 0 1 + 0 = 1 2 \displaystyle lim_{x \rightarrow 0} \frac{ \sin^{-1} x - \tan^{-1} x}{ln(1+x^3)} = lim_{x \rightarrow 0} \frac{\frac{x^3}{2} + O(x^5)}{x^3 + O(x^6)} = lim_{x \rightarrow 0} \frac{\frac{1}{2} + O(x^2)}{1 + O(x^3)} = \frac{\frac{1}{2} + 0}{1+0} = \boxed{\frac{1}{2}} .

Akhil D
Feb 27, 2017

Write the Taylor series expansion for all the functions around 0. Limit can be obtained as 1/2 easily

Well i dont remember the taylor series of inverse trigonometric functions. i remember only of sin , cos , tan and ln(1+x) .

Prakhar Bindal - 4 years, 3 months ago

I also used Taylor

Niladri Dan - 4 years, 3 months ago

Can you write a solution that is helpful to those who cannot solve it? Else I'm inclined to delete this solution to encourage others to contribute a relevant answer.

Brilliant Mathematics Staff - 4 years, 3 months ago
Prakhar Bindal
Feb 25, 2017

Well i did the long way. I Used L'Hospital's rule twice To get the answer 1/2

Can you write a solution that is helpful to those who cannot solve it? Else I'm inclined to delete this solution to encourage others to contribute a relevant answer.

Brilliant Mathematics Staff - 4 years, 3 months ago

Log in to reply

L'hospital's rule is the key behind my solution . just you need to differentiate twice and put in appropriate value

Prakhar Bindal - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...