A calculus problem by Akshat Sharda

Calculus Level 5

If α = 0 1 cos x ( x + 1 ) 2 d x \alpha=\displaystyle \int^{1}_{0} \dfrac{\cos x}{(x+1)^2}dx , find

4 π 2 4 π sin x 2 4 π + 2 x d x \int^{4\pi}_{4\pi-2}\dfrac{\sin\frac{x}{2}}{4\pi+2-x}dx

cos 1 2 1 α \frac{\cos 1}{2}-1-\alpha cos 1 2 1 + α \frac{\cos 1}{2}-1+\alpha cos 1 2 + α \frac{\cos 1}{2}+\alpha cos 1 2 + 1 + α -\frac{\cos 1}{2}+1+\alpha

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

I = 4 π 2 4 π sin x 2 4 π + 2 x d x Let 2 u = 4 π + 2 x 2 d u = d x = 2 1 2 sin ( 2 π + 1 u ) 2 u d u = 1 2 sin ( 1 u ) u d u Let t = 1 u d t = d u = 0 1 sin ( t ) t + 1 d t Replace t with x = 0 1 sin x x + 1 d x \begin{aligned} I & = \int_{4\pi-2}^{4\pi} \frac {\sin \frac x2}{4\pi+2-x} \ dx & \small \color{#3D99F6} \text{Let } 2u = 4\pi + 2 - x \implies 2\ du = - dx \\ & = \int_2^1 \frac {-2\sin (2\pi+1-u)}{2u} \ du \\ & = \int_1^2 \frac {\sin (1-u)}u \ du & \small \color{#3D99F6} \text{Let }-t =1-u \implies dt = du \\ & = \int_0^1 \frac {\sin (-t)}{t+1} \ dt & \small \color{#3D99F6} \text{Replace }t \text{ with }x \\ & = - \int_0^1 \frac {\sin x}{x+1} \ dx \end{aligned}

Now consider

α = 0 1 cos x ( x + 1 ) 2 d x By integration by parts = cos x x + 1 0 1 + 0 1 sin x x + 1 d x = cos 1 2 + 1 + I \begin{aligned} \alpha & = \int_0^1 \frac {\cos x}{(x+1)^2} \ dx & \small \color{#3D99F6} \text{By integration by parts} \\ & = - \frac {\cos x}{x+1} \bigg|_0^1 + \int_0^1 \frac {-\sin x}{x+1} \ dx \\ & = - \frac {\cos 1}2 + 1 + I \end{aligned}

I = cos 1 2 1 + α \begin{aligned} \implies I & = \boxed{\dfrac {\cos 1}2 - 1 + \alpha} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...