A calculus problem by Anish Roy

Calculus Level 3

Let a 1 = 1 a_{1}=1 and a n = n ( a n 1 + 1 ) a_{n}=n(a_{n-1}+1) for all n 2 n\geq2 . Define P n = ( 1 + 1 a 1 ) ( 1 + 1 a 2 ) ( 1 + 1 a 3 ) ( 1 + 1 a n ) P_{n}=\left(1+\frac{1}{a_{1}}\right)\left(1+\frac{1}{a_{2}}\right)\left(1+\frac{1}{a_{3}}\right)\cdots\left(1+\frac{1}{a_{n}}\right)

Given the value of lim n P n = x \displaystyle \lim_{n \to \infty}P_{n}=x

Then what is the value of x \lfloor{x}\rfloor

0 2 3 4 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anish Roy
Sep 16, 2017

We define another sequence { b n b_{n} } as b n = a n n ! b_{n}=\frac{a_{n}}{n!} . Then note that for n 2 n\geq2 , b n = a n n ! = a n 1 + 1 ( n 1 ) ! = b n 1 + 1 ( n 1 ) ! b n b n 1 = 1 ( n 1 ) ! b_{n}=\frac{a_{n}}{n!}=\frac{a_{n-1}+1}{(n-1)!}=b_{n-1}+\frac{1}{(n-1)!} \Rightarrow b_{n}-b_{n-1}=\frac{1}{(n-1)!}

Therefore b n = b 1 + k = 2 n ( b k b k 1 ) = 1 + k = 2 n 1 ( k 1 ) ! = k = 0 n 1 1 k ! b_{n}=b_{1}+\displaystyle \sum_{k=2}^{n}(b_{k}-b_{k-1})=1+\displaystyle \sum_{k=2}^{n}\frac{1}{(k-1)!}=\displaystyle \sum_{k=0}^{n-1}\frac{1}{k!} Hence lim n P n = lim n ( 1 + 1 a 1 ) ( 1 + 1 a 2 ) ( 1 + 1 a n ) = lim n ( a 1 + 1 a 1 . a 2 + 1 a 2 a n + 1 a n ) = lim n ( a 2 2 a 1 . a 3 3 a 2 a n + 1 ( n + 1 ) a n ) = lim n a n + 1 ( n + 1 ) ! = k = 0 1 n ! = e \begin{aligned} \displaystyle \lim_{n \to \infty}P_{n}= & \displaystyle \lim_{n \to \infty}(1+\frac{1}{a_{1}})(1+\frac{1}{a_{2}})\cdots(1+\frac{1}{a_{n}}) \\ & =\displaystyle \lim_{n \to \infty}(\frac{a_{1}+1}{a_{1}}.\frac{a_{2}+1}{a_{2}}\cdots \frac{a_{n}+1}{a_{n}}) \\ & =\displaystyle \lim_{n \to \infty}(\frac{a_{2}}{2a_{1}}.\frac{a_{3}}{3a_{2}}\cdots \frac{a_{n+1}}{(n+1)a_{n}}) \\ & =\displaystyle \lim_{n \to \infty} \frac{a_{n+1}}{(n+1)!} \\ & =\displaystyle \sum_{k=0}^{\infty}\frac{1}{n!} = e \end{aligned} x = e = 2.71828 \therefore x=e=2.71828

Thus x = e = 2.71828 = 2 \lfloor{x}\rfloor=\lfloor{e}\rfloor=\lfloor{2.71828}\rfloor=\boxed{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...