Inspiration: IIT-JEE Question

Calculus Level 4

lim n ( 1 n + 1 + 1 n + 2 + 1 n + 3 + + 1 3 n ) = ? \large \lim_{n \to \infty} \left(\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+\cdots +\frac{1}{3n}\right) = \, ?


The answer is 1.09861228867.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sparsh Sarode
Feb 23, 2017

lim n ( 1 n + 1 + 1 n + 2 + . . . + 1 n + 2 n ) \displaystyle \lim_{n \rightarrow \infty} \Bigg(\dfrac{1}{n+1}+\dfrac{1}{n+2}+...+\dfrac{1}{n+2n} \Bigg)

lim n 1 n ( n n + 1 + n n + 2 + . . . + n n + 2 n ) \displaystyle \lim_{n \rightarrow \infty} \dfrac{1}{n} \Bigg(\dfrac{n}{n+1}+\dfrac{n}{n+2}+...+\dfrac{n}{n+2n} \Bigg)

lim n 1 n ( 1 1 + 1 n + 1 1 + 2 n + . . . + 1 1 + 2 n n ) \displaystyle \lim_{n \rightarrow \infty} \dfrac{1}{n} \Bigg(\dfrac{1}{1+\frac{1}{n}}+\dfrac{1}{1+\frac{2}{n}}+...+\dfrac{1}{1+\frac{2n}{n}} \Bigg)

lim n 1 n r = 1 2 n 1 1 + r n = 0 2 1 1 + x d x ( Riemann’s sum: lim n 1 n r = a b f ( r n ) = lim n a n lim n b n f ( x ) d x ) \displaystyle \lim_{n \rightarrow \infty} \dfrac{1}{n} \sum_{r=1}^{2n} \dfrac{1}{1+\frac{r}{n}} = \int_0^2 \dfrac{1}{1+x} dx \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \displaystyle \Bigg(\text{Riemann's sum:} \lim_{n \rightarrow \infty} \dfrac{1}{n} \sum_{r=a}^b f\bigg( \dfrac{r}{n} \bigg) = \int_{\lim_{n \rightarrow \infty} \frac{a}{n}}^{\lim_{n \rightarrow \infty} \frac{b}{n}} f(x) dx \Bigg)

= ln 3 = 1.0986 =\ln 3 = 1.0986

The question is basically asking us to evaluate lim n k = 1 2 n 1 n + k \displaystyle \large \lim_{n \to \infty} \sum_{k=1}^{2n} \frac{1}{n+k}

= lim n k = 1 2 n 1 ( 1 2 + k 2 n ) 1 2 n = lim N k = 1 N 1 ( 1 2 + k N ) 1 N = \displaystyle \large \lim_{n \to \infty} \sum_{k=1}^{2n} \frac{1}{\left(\frac{1}{2}+\frac{k}{2n}\right)}\cdot \frac{1}{2n} = \lim_{N \to \infty} \sum_{k=1}^{N} \frac{1}{\left(\frac{1}{2}+\frac{k}{N}\right)}\cdot \frac{1}{N} , which is a Riemann sum, convertable into an integral.

The Riemann sum is of the form lim n k = 1 n f ( a + k Δ x ) Δ x \displaystyle \large \lim_{n \to \infty} \sum _{k=1}^nf\left(a+kΔx\right)Δx , where Δ x = b a n Δx = \frac{b-a}{n} such that it advances to a b f ( x ) d x \displaystyle \large \int _a^bf\left(x\right)dx

Comparing this with our Riemann sum, we take f ( x ) = 1 x \displaystyle \large f\left(x\right)=\frac{1}{x} such that f ( a + k Δ x ) Δ x = 1 a + k Δ x 1 N f\left(a+kΔx\right)Δx = \frac{1}{a+kΔx} \cdot \frac{1}{N} and a + k Δ x = 1 2 + k ( 1 N ) a+kΔx = \frac{1}{2}+k\left(\frac{1}{N}\right) and Δ x = b a N = 1 N Δx = \frac{b-a}{N} = \frac{1}{N}

This implies that a = 1 2 a=\frac{1}{2} and b = a + 1 = 3 2 b=a+1=\frac{3}{2}

Subsequently, the integral becomes 1 2 3 2 1 x d x = ln 3 1.0986 \int _{\frac{1}{2}}^{\frac{3}{2}}\frac{1}{x}dx = \ln 3 \approx 1.0986

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...