A calculus problem by Bala vidyadharan

Calculus Level 1

lim x 0 e 27 x 1 sin ( x ) = ? \lim_{x\to0} \frac{e^{27x}-1}{\sin(x)} = \ ?


The answer is 27.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The relevant Maclaurin series are

e 27 x 1 = 27 x + ( 27 x ) 2 2 + ( 27 x ) 3 6 + . . . . = x ( 27 + O ( x 3 ) ) e^{27x} - 1 = 27x + \dfrac{(27x)^{2}}{2} + \dfrac{(27x)^{3}}{6} + .... = x(27 + O(x^{3})) and

sin ( x ) = x x 3 6 + x 5 120 . . . . = x ( 1 O ( x 2 ) ) . \sin(x) = x - \dfrac{x^{3}}{6} + \dfrac{x^{5}}{120} - .... = x(1 - O(x^{2})).

The given limit then equals lim x 0 27 + O ( x 3 ) 1 O ( x 2 ) = 27 . \lim_{x\to0} \dfrac{27 + O(x^{3})}{1 - O(x^{2})} = \boxed{27}.

James Watson
Aug 15, 2020

Since plugging in 0 0 gives us a 0 0 \cfrac{0}{0} indeterminate form, we can use L'Hopital's Rule and differentiate the numerator and the denominator: lim x 0 e 27 x 1 sin x = lim x 0 d d x ( e 27 x 1 ) d d x ( sin x ) = lim x 0 27 e 27 x c o s x = 27 e 27 ( 0 ) cos ( 0 ) = 27 e 0 = 27 \begin{aligned} \lim\limits_{x\to 0} \frac{e^{27x}-1}{\sin x} &= \lim\limits_{x\to 0} \frac{\frac{d}{dx}\left(e^{27x}-1\right)}{\frac{d}{dx}\left(\sin x\right)} \\ &= \lim\limits_{x\to 0} \frac{27e^{27x}}{cos x} \\ &= \frac{27e^{27(0)}}{\cos(0)} \\ &= 27e^0 = \green{\boxed{27}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...