A calculus problem by crazy singh

Calculus Level 2

if

lim x ln x n [ x ] [ x ] = a \lim _{ x\to \infty } \frac { \ln { { x }^{ n } } - \left[ x \right] }{ \left[ x \right] } = a

where [ x ] \left[ x \right] denotes the integral part of x x

Then a 2 { a }^{ 2 } is equal to ?

note: n n is any real number.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Crazy Singh
Mar 3, 2014

this limit changes into

a = lim x ( n ln x [ x ] 1 ) a= \lim _{ x\to \infty } \left( n\frac { \ln { { x } } }{ \left[ x \right] } -1 \right)

now we need to calculate lim x ( ln x [ x ] ) \lim _{ x\to \infty } \left( \frac { \ln { { x } } }{ \left[ x \right] } \right)

we know that x 1 [ x ] x x-1\quad \le \quad \left[ x \right] \quad \le \quad x

so 1 x 1 1 [ x ] 1 x \frac { 1 }{ x-1 } \quad \ge \quad \frac { 1 }{ \left[ x \right] } \quad \ge \quad \frac { 1 }{ x }

and ln x x 1 ln x [ x ] ln x x ; \frac { \ln { x } }{ x-1 } \quad \ge \quad \frac { \ln { x } }{ \left[ x \right] } \quad \ge \quad \frac { \ln { x } }{ x } ;\quad since ln x \ln { x } is positive as x x tends to positive infinity.

lim x ln x x 1 lim x ln x [ x ] lim x ln x x \lim _{ x\to \infty } \frac { \ln { x } }{ x-1 } \ge \lim _{ x\to \infty } \frac { \ln { x } }{ \left[ x \right] } \ge \lim _{ x\to \infty } \frac { \ln { x } }{ x }

0 lim x ln x [ x ] 0 0\quad \ge \lim _{ x\to \infty } \frac { \ln { x } }{ \left[ x \right] } \ge \quad 0 ;

since lim x ln x x 1 \lim _{ x\to \infty } \frac { \ln { x } }{ x-1 } and lim x ln x x \lim _{ x\to \infty } \frac { \ln { x } }{ x } both are equal to zero. (can be proved by L' Hospital's rule, \frac { \infty }{ \infty } form )

hence lim x ln x [ x ] = 0 \lim _{ x\to \infty } \frac { \ln { x } }{ \left[ x \right] } = 0

so a = ( n × 0 ) 1 = 1 a=(n\times 0)-1=-1 and a 2 = 1 { a }^{ 2 }=1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...