Let F ( x ) = ∫ sin ( x ) cos ( x ) e t 2 + t x d t . Find F ′ ( 0 ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let G ( u , v , x ) = ∫ v u e t 2 + t x d t ⟹ F ( x ) = G ( c o s ( x ) , s i n ( x ) , x )
Then F ′ ( x ) = ∂ u ∂ G ∂ x ∂ u + ∂ v ∂ G ∂ x ∂ v + ∂ x ∂ G ∂ x ∂ x
= e u 2 + u x ( − s i n ( x ) ) − e v 2 + v x ( c o s ( x ) ) + ∫ v u t e t 2 + t x d t
u ( x ) = c o s ( x ) ⇒ u ( 0 ) = 1
v ( x ) = s i n ( x ) ⇒ v ( 0 ) = 0
So F ′ ( 0 ) = e 1 2 + 1 ( 0 ) ( − 0 ) − e 0 2 + 0 ( 0 ) ( 1 ) + ∫ 0 1 t e t 2 + t ( 0 ) d t
= − 1 + ∫ 0 1 t e t 2 d t = 2 e − 3
Problem Loading...
Note Loading...
Set Loading...
Write e x 2 / 4 F ( x ) = ∫ sin ( x ) cos ( x ) e t 2 + t x + x 2 / 4 d t = ∫ sin ( x ) cos ( x ) e ( t + x / 2 ) 2 d t = ∫ sin ( x ) + x / 2 cos ( x ) + x / 2 e τ 2 d τ .
Now take the derivative of both sides, using the chain rule and fundamental theorem of calculus on the right-hand side, 2 1 x e x 2 / 4 F ( x ) + e x 2 / 4 F ′ ( x ) = e ( cos ( x ) + x / 2 ) 2 ( − sin ( x ) + 2 1 ) − e ( sin ( x ) + x / 2 ) 2 ( cos ( x ) + 2 1 ) , and set x = 0 : F ′ ( 0 ) = e 1 ( 2 1 ) − e 0 ( 1 + 2 1 ) = 2 e − 2 3 ≈ − 0 . 1 4 0 8 5 9 0 8 6