The derivative of an integral

Calculus Level 3

Let F ( x ) = sin ( x ) cos ( x ) e t 2 + t x d t \displaystyle F(x)=\int_{\sin(x)}^{\cos(x)}{e^{{t^2}+tx}dt} . Find F ( 0 ) F'(0) .


The answer is -0.14085908577.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Brian Moehring
Apr 24, 2017

Write e x 2 / 4 F ( x ) = sin ( x ) cos ( x ) e t 2 + t x + x 2 / 4 d t = sin ( x ) cos ( x ) e ( t + x / 2 ) 2 d t = sin ( x ) + x / 2 cos ( x ) + x / 2 e τ 2 d τ . e^{x^2/4} F(x) = \int_{\sin(x)}^{\cos(x)}e^{t^2+tx+x^2/4}\,dt = \int_{\sin(x)}^{\cos(x)}e^{(t+x/2)^2}\,dt = \int_{\sin(x)+x/2}^{\cos(x)+x/2} e^{\tau^2}\,d\tau.

Now take the derivative of both sides, using the chain rule and fundamental theorem of calculus on the right-hand side, 1 2 x e x 2 / 4 F ( x ) + e x 2 / 4 F ( x ) = e ( cos ( x ) + x / 2 ) 2 ( sin ( x ) + 1 2 ) e ( sin ( x ) + x / 2 ) 2 ( cos ( x ) + 1 2 ) , \frac{1}{2}xe^{x^2/4} F(x) + e^{x^2/4} F'(x) = e^{(\cos(x)+x/2)^2}\left(-\sin(x)+\frac{1}{2}\right) - e^{(\sin(x)+x/2)^2}\left(\cos(x) + \frac{1}{2}\right), and set x = 0 x=0 : F ( 0 ) = e 1 ( 1 2 ) e 0 ( 1 + 1 2 ) = e 2 3 2 0.140859086 F'(0) = e^1\left(\frac{1}{2}\right) - e^0\left(1+\frac{1}{2}\right) = \frac{e}{2} - \frac{3}{2} \approx \boxed{-0.140859086}

Daniel Juncos
Apr 23, 2017

Let G ( u , v , x ) = v u e t 2 + t x d t F ( x ) = G ( c o s ( x ) , s i n ( x ) , x ) \displaystyle{G(u,v,x)=\int_{v}^{u}{e^{{t^2}+tx}}dt \implies F(x)=G(cos(x),sin(x),x)}

Then F ( x ) = G u u x + G v v x + G x x x \displaystyle{F'(x)=\frac{\partial G}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial G}{\partial v}\frac{\partial v}{\partial x}+\frac{\partial G}{\partial x}\frac{\partial x}{\partial x}}

= e u 2 + u x ( s i n ( x ) ) e v 2 + v x ( c o s ( x ) ) + v u t e t 2 + t x d t \displaystyle{=e^{{u^2}+ux}(-sin(x))-e^{{v^2}+vx}(cos(x))+\int_{v}^{u}{te^{{t^2}+tx}}dt}

u ( x ) = c o s ( x ) u ( 0 ) = 1 u(x)=cos(x)\Rightarrow u(0)=1

v ( x ) = s i n ( x ) v ( 0 ) = 0 v(x)=sin(x)\Rightarrow v(0)=0

So F ( 0 ) = e 1 2 + 1 ( 0 ) ( 0 ) e 0 2 + 0 ( 0 ) ( 1 ) + 0 1 t e t 2 + t ( 0 ) d t \displaystyle{ F'(0)=e^{1^2+1(0)}(-0)-e^{0^2+0(0)}(1)+\int_0^1{te^{t^{2}+t(0)}dt }}

= 1 + 0 1 t e t 2 d t = e 3 2 \displaystyle{=-1+\int_0^1{te^{t^2}dt} = \frac{e-3}{2} }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...