A calculus problem by Divyansh Khatri

Calculus Level 5

If y = 10 ( 1 + ( 2 ( 6 + 7 x 4 ) 9 ) 3 ) 5 y=10(1+(2-(6+7x^{4})^{9})^{3})^{5} Find last 9 digits for d y / d x {dy}/{dx} at x=1.

You may use wolfram alpha for finding the last 9 digits but please find d y / d x {dy}/{dx} yourself.


The answer is 818000000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akshat Sharda
Feb 18, 2016

By applying Chain Rule again and again :

= 10 ( 5 ) ( 1 + ( 2 ( 6 + 7 x 4 ) 9 ) 3 ) 4 [ 1 + ( 2 ( 6 + 7 x 4 ) 9 ) 3 ] = 50 ( 1 + ( 2 ( 6 + 7 x 4 ) 9 ) 3 ) 4 [ 0 + 3 ( 2 ( 6 + 7 x 4 ) 9 ) 2 + [ 2 ( 6 + 7 x 4 ) 9 ] ] = 150 ( 1 + ( 2 ( 6 + 7 x 4 ) 9 ) 3 ) 4 ( 2 ( 6 + 7 x 4 ) 9 ) 2 + [ 0 9 ( 6 + 7 x 4 ) 8 [ 6 + 7 x 4 ] ] = 1350 ( 1 + ( 2 ( 6 + 7 x 4 ) 9 ) 3 ) 4 ( 2 ( 6 + 7 x 4 ) 9 ) 2 ( 6 + 7 x 4 ) 8 28 x 3 = 37800 x 3 ( 1 + ( 2 ( 6 + 7 x 4 ) 9 ) 3 ) 4 ( 2 ( 6 + 7 x 4 ) 9 ) 2 ( 6 + 7 x 4 ) 8 \begin{aligned} & = 10(5)(1+(2-(6+7x^{4})^{9})^{3})^{4} \left[1+(2-(6+7x^{4})^{9})^{3} \right]' \\ & = 50 (1+(2-(6+7x^{4} )^{9})^{3})^{4} \left[ 0+3 (2-(6+7x^{4})^{9})^{2} + \left[ 2-(6+7x^{4})^{9} \right] ' \right] \\ & = 150 (1+(2-(6+7x^{4} )^{9})^{3})^{4} (2-(6+7x^{4})^{9})^{2} + \left[ 0-9(6+7x^4)^8 \left[ 6+7x^4\right] ' \right] \\ & = -1350 (1+(2-(6+7x^{4} )^{9})^{3})^{4} (2-(6+7x^{4})^{9})^{2} (6+7x^4)^8 28x^3 \\ & = -37800x^3 (1+(2-(6+7x^{4} )^{9})^{3})^{4} (2-(6+7x^{4})^{9})^{2} (6+7x^4)^8 \end{aligned}

Now, as suggested, we can use Wolfram alpha to find last 9 9 digits of the above expression at x = 1 x=1 .

818000000 \Rightarrow \boxed{818000000}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...