A twist on finding angle between planes

Calculus Level 4

Given a vector function r ( t ) = 2 t , t 2 , t 3 3 \vec{r} (t) = \left \langle 2t, t^2, \dfrac{t^3}{3} \right \rangle , if the smaller angle between the osculating planes at t = 1 t=1 and t = 2 t=2 can be represented in the form arccos ( α β ) \arccos \left( \dfrac{\alpha}{\beta} \right) , where α , β R \alpha, \beta \in \mathbb{R} and are coprime positive integers, find α + β \alpha + \beta .

Clarification

  • The osculating plane is the plane given by vectors N \vec{N} and T \vec{T} , where T = r ( t ) r ( t ) \vec{T} = \dfrac{\vec{r}'(t)}{\left|\vec{r}'(t)\right|} and N = T ( t ) T ( t ) \vec{N} = \dfrac{\vec{T}'(t)}{\left|\vec{T}'(t)\right|} .


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hobart Pao
Mar 1, 2017

Solution .

r ( t ) = 2 t , t 2 , t 3 3 \vec{r}(t) = \left \langle 2t, t^2, \dfrac{t^3}{3} \right \rangle T ( t ) = r ( t ) r ( t ) = 2 , 2 t , t 2 t 2 + 2 \vec{T}(t) = \dfrac{\vec{r}’(t)}{\left|\vec{r}’(t) \right|} = \dfrac{\left \langle 2, 2t, t^2 \right \rangle}{t^2 +2} N ( t ) = T ( t ) T ( t ) \vec{N}(t) = \dfrac{\vec{T}’(t)}{\left|\vec{T}’(t) \right|} T ( t ) = 2 ( t 2 + 2 ) 2 2 t , 2 ( t 2 + 2 ) ( 2 t ) 2 ( t 2 + 2 ) 2 , 2 t ( t 2 + 2 ) 2 t 3 ( t 2 + 2 ) 2 , = 4 t ( t 2 + 2 ) 2 , 4 2 t 2 ( t 2 + 2 ) 2 , 4 t ( t 2 + 2 ) 2 \vec{T}’(t) = \left \langle -2(t^2 +2)^{-2} 2t, \dfrac{2(t^2 +2)-(2t)^2}{(t^2 +2)^2}, \dfrac{2t(t^2 + 2)- 2t^3}{(t^2 +2)^2}, \right \rangle = \left \langle \dfrac{-4t}{(t^2 +2)^2}, \dfrac{4-2t^2}{(t^2 +2)^2}, \dfrac{4t}{(t^2 +2)^2} \right \rangle T ( t ) = 16 t 2 + 16 + 4 t 4 16 t 2 + 16 t 2 ( t 2 + 2 ) 4 = 2 t 4 + 4 t 2 + 4 ( t 2 + 2 ) 2 = 2 t 2 + 2 \left| \vec{T}’(t) \right| = \sqrt{\dfrac{16t^2 + 16 + 4t^4 - 16t^2 + 16t^2}{(t^2 + 2)^4}} = \dfrac{2\sqrt{t^4 + 4t^2 + 4}}{(t^2 +2)^2} = \dfrac{2}{t^2 +2} N ( t ) = 2 t , 2 t 2 , 2 t t 2 + 2 \vec{N}(t) = \dfrac{\left \langle -2t, 2-t^2, 2t\right \rangle}{t^2 +2}

The binormal vector B ( t ) \vec{B}(t) will be a normal vector to the osculating plane at time t t given by vectors N ( t ) , T ( t ) \vec{N}(t), \vec{T}(t) since B ( t ) = N ( t ) × T ( t ) \vec{B}(t) = \vec{N}(t) \times \vec{T}(t)

B ( t ) = N ( t ) × T ( t ) = i ^ j ^ k ^ 2 t t 2 + 2 2 t 2 t 2 + 2 2 t t 2 + 2 2 t 2 + 2 2 t t 2 + 2 t 2 t 2 + 2 \vec{B}(t) = \vec{N}(t) \times \vec{T}(t) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \dfrac{-2t}{t^2 + 2} &\dfrac{2-t^2}{t^2 + 2} &\dfrac{2t}{t^2 + 2} \\ \dfrac{2}{t^2 + 2}&\dfrac{2t}{t^2 + 2} & \dfrac{t^2}{t^2 + 2} \end{vmatrix}

B ( t ) = i ^ [ ( 2 t 2 t 2 + 2 ) ( t 2 t 2 + 2 ) ( 2 t t 2 + 2 ) ( 2 t t 2 + 2 ) ] j ^ [ ( 2 t t 2 + 2 ) ( t 2 t 2 + 2 ) ( 2 t t 2 + 2 ) ( 2 t 2 + 2 ) ] + k ^ [ ( 2 t t 2 + 2 ) ( 2 t t 2 + 2 ) ( 2 t 2 t 2 + 2 ) ( 2 t 2 + 2 ) ] \vec{B}(t) = \hat{i} \left[ \left(\dfrac{2-t^2}{t^2 +2} \right) \left( \dfrac{t^2}{t^2 +2}\right) - \left(\dfrac{2t}{t^2 +2} \right) \left(\dfrac{2t}{t^2 +2} \right) \right] - \hat{j}\left[ \left(\dfrac{-2t}{t^2 +2} \right) \left( \dfrac{t^2}{t^2 +2}\right) - \left(\dfrac{2t}{t^2 +2} \right) \left( \dfrac{2}{t^2 +2}\right) \right] + \hat{k}\left[ \left(\dfrac{-2t}{t^2 +2} \right) \left( \dfrac{2t}{t^2 +2}\right) - \left(\dfrac{2-t^2}{t^2 +2} \right) \left( \dfrac{2}{t^2 +2}\right) \right]

= t 2 i ^ + 2 t j ^ 2 k ^ t 2 + 2 = \dfrac{t^2 \hat{i} + 2t \hat{j} - 2\hat{k}}{t^2 +2} B ( 1 ) = 1 3 , 2 3 , 2 3 ; B ( 2 ) = 2 3 , 2 3 , 1 3 \vec{B}(1) = \left \langle \dfrac{-1}{3}, \dfrac{2}{3}, \dfrac{-2}{3} \right \rangle; \vec{B}(2) = \left \langle \dfrac{-2}{3}, \dfrac{2}{3}, \dfrac{-1}{3} \right \rangle

The angle between two planes is the same as the angle between their normal vectors.

cos θ = B ( 1 ) B ( 2 ) B ( 1 ) B ( 2 ) = 1 3 2 3 + 2 3 2 3 + 2 3 1 3 ( 1 3 ) 2 + ( 2 3 ) 2 + ( 2 3 ) 2 ( 2 3 ) 2 + ( 2 3 ) 2 + ( 1 3 ) 2 = 8 9 ; arccos ( 8 9 ) = θ \cos \theta = \dfrac{\vec{B}(1) \cdot \vec{B}(2)}{\left|\vec{B}(1) \right| \left| \vec{B}(2) \right| } = \dfrac{\dfrac{-1}{3} \cdot \dfrac{-2}{3} + \dfrac{2}{3} \cdot \dfrac{2}{3} + \dfrac{-2}{3} \cdot \dfrac{-1}{3} }{\sqrt{ \left( \dfrac{-1}{3} \right)^2 + \left( \dfrac{2}{3} \right)^2 + \left( \dfrac{-2}{3} \right)^2} \sqrt{ \left( \dfrac{-2}{3} \right)^2 + \left( \dfrac{2}{3} \right)^2 + \left( \dfrac{-1}{3} \right)^2} } = \dfrac{8}{9}; \arccos \left( \dfrac{8}{9} \right) = \theta

α + β = 8 + 9 = 17 \alpha + \beta = 8+9=\boxed{17}

@Andreas Wendler

Hobart Pao - 4 years, 3 months ago

Since we're solving for the relative angle between planes, it also suffices to simply calculate the cross product between the first and second derivative of the given vector. Then use the definition of the dot product (between the resultant cross product(s) evaluated at 1 and 2, respectively) to calculate the angle. This way you can find the answer without worrying about normalization, orientation etc., since those things don't change the relative angle.

Tristan Goodman - 2 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...