A calculus problem by Hobart Pao

Calculus Level 4

I = 0 0 sin x sin y x y d y d x \large \mathscr{I} = \displaystyle \int \limits_{0}^{\infty} \int \limits_{0}^{\infty} \dfrac{\sin x \sin y}{xy} \, dy \, dx

Find 1000 I \left \lfloor 1000\mathscr{I} \right \rfloor


The answer is 2467.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hobart Pao
May 3, 2017

I = 0 0 sin x sin y x y d y d x = 0 sin x x [ 0 sin y y d y ] d x = ( 0 sin x x d x ) ( 0 sin y y d y ) = ( π 2 ) 2 = π 2 4 2 , 467 \mathscr{I} = \displaystyle \int \limits_0^{\infty}\int \limits_0^{\infty}\dfrac{\sin x \sin y }{xy} \, dy \, dx = \int \limits_0^{\infty} \dfrac{\sin x}{x} \left[ \int \limits_0^{\infty} \dfrac{\sin y}{y} \, dy \right] \, dx = \left( \int \limits_0^{\infty} \dfrac{\sin x}{x} \, dx \right) \left( \int \limits_0^{\infty} \dfrac{\sin y}{y} \, dy \right) = \left( \dfrac{\pi}{2} \right)^2 = \dfrac{\pi^2}{4} \approx 2,467

1000 2 , 467... = 2467 \left \lfloor 1000 \cdot 2,467... \right \rfloor = \boxed{2467}

Nice solution (+1). Did the same way

Rahil Sehgal - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...