Why couldn't it be a 1?

Calculus Level 4

0 1 x 5 ( 2 x ) 4 d x \large \displaystyle \int_{0}^{1} x^5 (2-x)^4 \, dx

If the above integral can be expressed in the form a b \dfrac{a}{b} , where a a and b b are coprime positive integers, find a + b a+b .


The answer is 823.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

0 1 x 5 ( 2 x ) 4 d x = 0 1 x 5 ( 2 4 + x 4 4 × 2 3 × x 4 × 2 × x 3 + 6 × 2 2 × x 2 ) d x = 0 1 ( 16 x 5 + x 9 32 × x 6 8 × x 8 + 24 × x 7 ) d x = [ 16 x 6 6 + x 1 0 10 32 x 7 7 8 x 9 9 + 24 x 8 8 ] 0 1 = 16 6 + 1 10 32 7 8 9 + 24 8 0 = 80640 + 3024 138240 26880 + 90720 30240 = 9264 30240 = 193 630 a b = 193 630 a + b = 193 + 630 = 823 . \large \displaystyle \int_{0}^{1} x^5 (2-x)^4 \, dx\\ \large \displaystyle = \int_0^1 x^5 (2^4 + x^4 - 4 \times 2^3 \times x - 4 \times 2 \times x^3 + 6 \times 2^2 \times x^2) \, dx\\ \large \displaystyle = \int_0^1 (16x^5 + x^9 - 32 \times x^6 - 8 \times x^8 + 24 \times x^7) \, dx\\ \large \displaystyle = \left[ \frac{16x^6}{6} + \frac{x^10}{10} - \frac{32x^7}{7} - \frac{8x^9}{9} + \frac{24x^8}{8} \right]_0^1\\ \large \displaystyle = \frac{16}{6} + \frac{1}{10} - \frac{32}{7} - \frac{8}{9} + \frac{24}{8} - 0\\ \large \displaystyle = \frac{80640 + 3024 - 138240 - 26880 + 90720}{30240} = \frac{9264}{30240} = \frac{193}{630}\\ \large \displaystyle \implies \frac{a}{b} = \frac{193}{630}\\ \large \displaystyle \therefore a + b = 193 + 630 = \color{#3D99F6}{\boxed{823}}.

Faster way to do it? Multiplying out like that is a pain. I modeled the problem off the Beta function changed part of it, maybe there's a way to do it faster using Beta function.

Hobart Pao - 5 years, 1 month ago

I used Beta function as mentioned by Hobart Pao .

I = 0 1 x 5 ( 2 x ) 4 d x Let 2 x = 1 + sin θ x = 1 sin θ d x = cos θ d θ = 0 π 2 ( 1 sin θ ) 5 ( 1 + sin θ ) 4 cos θ d θ = 0 π 2 ( 1 sin θ ) ( 1 sin 2 θ ) 4 cos θ d θ = 0 π 2 ( 1 sin θ ) cos 9 θ d θ = 0 π 2 ( sin 0 θ cos 9 θ sin θ cos 9 θ ) d θ = 1 2 ( B ( 1 2 , 5 ) B ( 1 , 5 ) ) = 1 2 ( Γ ( 1 2 ) Γ ( 5 ) Γ ( 11 2 ) Γ ( 1 ) Γ ( 5 ) Γ ( 6 ) ) = 4 ! 2 ( 2 5 π 9 ! ! π 1 5 ! ) = 256 630 1 10 = 193 630 \begin{aligned} I & = \int_0^1 x^5(2-x)^4 \ dx \quad \quad \small \color{#3D99F6}{\text{Let }2-x=1+\sin \theta \implies x = 1-\sin \theta \implies dx = - \cos \theta \ d\theta} \\ & = \int_0^\frac{\pi}{2} (1-\sin \theta)^5(1+\sin \theta)^4 \cos \theta \ d\theta \\ & = \int_0^\frac{\pi}{2} (1-\sin \theta)(1-\sin^2 \theta)^4 \cos \theta \ d\theta \\ & = \int_0^\frac{\pi}{2} (1-\sin \theta) \cos^9 \theta \ d\theta \\ & = \int_0^\frac{\pi}{2} (\sin^0 \theta \cos^9 \theta -\sin \theta \cos^9 \theta) \ d\theta \\ & = \frac{1}{2}\left( B \left(\frac{1}{2}, 5 \right) - B \left(1, 5 \right) \right) \\ & = \frac{1}{2} \left(\frac{\Gamma \left(\frac{1}{2}\right) \Gamma (5)}{\Gamma \left(\frac{11}{2}\right)} - \frac{\Gamma (1) \Gamma (5)}{\Gamma (6)} \right) \\ & = \frac{4!}{2} \left(\frac{2^5 \sqrt{\pi}}{9!! \sqrt{\pi}} - \frac{1}{5!} \right) \\ & = \frac{256}{630} - \frac{1}{10} = \frac{193}{630} \end{aligned}

a + b = 193 + 630 = 823 \implies a + b = 193 + 630 = \boxed{823}

Nicely done! That's what I was looking for.

Hobart Pao - 5 years, 1 month ago
Ahmed Alaradi
May 7, 2016

It will be better to inform that a/b is in the simplest form

I did. a and b are coprime positive integers, meaning that the only factor they share is 1.

Hobart Pao - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...