Just another gaussian problem

Calculus Level 5

Calulate the integral:

cos ( x ) e x 2 2 d x \large \int\limits_{-\infty }^{\infty }{\cos (x)\,{{e}^{-\frac{{{x}^{2}}}{2}}}}dx


The answer is 1.52.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Humberto Bento
Apr 2, 2015

Ok, both solutions are very interesting. They are both nice and imaginative. Mine is a little less imaginative:

+ cos ( x ) e x 2 2 d x = + ( cos ( x ) + i sin ( x ) ) e x 2 2 d x = + e i x e x 2 2 d x = \int\limits_{-\infty }^{+\infty }{\cos (x){{e}^{-\frac{{{x}^{2}}}{2}}}dx}=\int\limits_{-\infty }^{+\infty }{(\cos (x)+i\sin (x)){{e}^{-\frac{{{x}^{2}}}{2}}}dx}=\int\limits_{-\infty }^{+\infty }{{{e}^{ix}}{{e}^{-\frac{{{x}^{2}}}{2}}}dx}= + e x 2 2 + i x d x = + e x 2 2 i x 2 d x = + e x 2 2 i x + i 2 2 e i 2 2 d x = \int\limits_{-\infty }^{+\infty }{{{e}^{-\frac{{{x}^{2}}}{2}+ix}}dx}=\int\limits_{-\infty }^{+\infty }{{{e}^{-\frac{{{x}^{2}}-2ix}{2}}}dx}=\int\limits_{-\infty }^{+\infty }{{{e}^{-\frac{{{x}^{2}}-2ix+{{i}^{2}}}{2}}}{{e}^{\frac{{{i}^{2}}}{2}}}dx}= e 1 2 + e ( x i ) 2 2 d x = e 1 2 2 π = 2 π e {{e}^{-\frac{1}{2}}}\int\limits_{-\infty }^{+\infty }{{{e}^{-\frac{{{(x-i)}^{2}}}{2}}}dx}={{e}^{-\frac{1}{2}}}\sqrt{2\pi }=\sqrt{\frac{2\pi }{e}}

Using the gaussian result. Like both the other solutions, it's lacks somehow of a mathematical prove (the exchange between sum and integral for infinite limits of integration and the possibility of derivative under an integral with infinite range). The gaussian integral is not a shift on the real numbers. The prove is easy, though! Thanks to all. I've learned a lot!

There is an implied use of Cauchy's integral theorem in your evaluation of the integral at the end. Essentially you're substituting u = x i u = x-i and using the known value of the integral of e u 2 . e^{-u^2}. But in fact this only works because of facts about contour integration; there are things to check. (Use a rectangular contour.)

Patrick Corn - 3 years, 8 months ago
Potsawee Manakul
Mar 29, 2015

Let I ( α ) = c o s ( α x ) e x 2 / 2 d x I(\alpha)=\int_{-\infty }^{\infty} cos(\alpha x)e^{-x^2/2}dx d I d α = x s i n ( α x ) e x 2 / 2 d x \frac{\mathrm{d} I }{\mathrm{d} \alpha}=-\int_{-\infty }^{\infty} xsin(\alpha x)e^{-x^2/2}dx

using integrating by parts : d I d α = [ s i n ( α x ) e x 2 / 2 ] α e x 2 / 2 c o s ( α x ) d x \frac{\mathrm{d} I }{\mathrm{d} \alpha} = \left [ sin(\alpha x)e^{-x^2/2} \right ]_{-\infty}^{\infty} -\alpha\int_{-\infty}^{\infty}e^{-x^2/2}cos(\alpha x) dx d I d α = 0 α I \frac{\mathrm{d} I }{\mathrm{d} \alpha} = 0-\alpha I therefore, I ( α ) = ( c o n s t ) e α 2 / 2 I(\alpha)=(const)e^{-\alpha^2/2} we know that I ( 0 ) = e x 2 / 2 d x = 2 π I(0)=\int_{-\infty }^{\infty}e^{-x^2/2}dx=\sqrt{2\pi} c o n s t = 2 π const=\sqrt{2\pi} thus, c o s ( x ) e x 2 / 2 d x = 2 π / e = 1.52 \int_{-\infty }^{\infty} cos(x)e^{-x^2/2}dx = \sqrt{2\pi/e} =1.52

Let start with infinite series!

Fisrt we have cos ( x ) = Σ n = 0 x 2 n ( 1 ) n ( 2 n ) ! \displaystyle\cos(x)=\Sigma_{n=0}^{\infty} \frac{x^{2n}(-1)^{n}}{(2n)!}

So the integral becomes

cos ( x ) e x 2 2 d x = ( Σ n = 0 x 2 n ( 1 ) n ( 2 n ) ! ) e x 2 2 d x \displaystyle \int_{-\infty}^{\infty} \cos(x)e^{-\frac{x^{2}}{2}}dx=\int_{-\infty}^{\infty} (\Sigma_{n=0}^{\infty} \frac{x^{2n}(-1)^{n}}{(2n)!})e^{-\frac{x^{2}}{2}}dx

Σ n = 0 ( x 2 n ( 1 ) n ( 2 n ) ! e x 2 2 d x ) \displaystyle \Sigma_{n=0}^{\infty}(\int_{-\infty}^{\infty} \frac{x^{2n}(-1)^{n}}{(2n)!}e^{-\frac{x^{2}}{2}}dx)

x 2 n ( 1 ) n ( 2 n ) ! e x 2 2 d x = ( 1 ) n ( 2 n ) ! × ( 2 n 1 ) x 2 n 3 e x 2 2 d x \displaystyle \int_{-\infty}^{\infty} \frac{x^{2n}(-1)^{n}}{(2n)!}e^{-\frac{x^{2}}{2}}dx=\frac{(-1)^{n}}{(2n)!}\times (2n-1) \int_{-\infty}^{\infty} x^{2n-3}e^{-\frac{x^{2}}{2}}dx

Then x 2 n e x 2 2 d x = ( 2 n ) ! 2 n n ! e x 2 2 d x \displaystyle \int_{-\infty}^{\infty} x^{2n}e^{-\frac{x^{2}}{2}}dx=\frac{(2n)!}{2^{n}n!} \int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}}dx

Σ n = 0 ( x 2 n ( 1 ) n ( 2 n ) ! e x 2 2 d x ) = Σ n = 0 ( 1 ) n 2 n n ! × e x 2 2 d x \displaystyle \Sigma_{n=0}^{\infty}(\int_{-\infty}^{\infty} \frac{x^{2n}(-1)^{n}}{(2n)!}e^{-\frac{x^{2}}{2}}dx) = \Sigma_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n}n!}\times \int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}}dx

Σ n = 0 ( 1 ) n 2 n n ! = e 1 2 \displaystyle \Sigma_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n}n!} =e^{-\frac{1}{2}}

so the answer is

e 1 2 × 2 π = 2 π e \displaystyle e^{-\frac{1}{2}}\times \sqrt{2\pi}=\sqrt{\frac{2\pi}{e}}

Chew-Seong Cheong
Sep 25, 2017

Similar solution with @Humberto Bento 's

I = cos x e x 2 2 d x By Euler’s formula: e i θ = cos θ + i sin θ = ( e i x e x 2 2 ) d x where ( z ) is the real part of z . = ( e 1 2 ( x 2 2 i x ) d x ) = ( e 1 2 ( ( x i ) 2 + 1 ) d x ) Let u = x i 2 d u = d x 2 = ( 2 e e u 2 d u ) Note that e u 2 d u is Gaussian integral. = ( 2 e π ) = 2 π e 1.520 \begin{aligned} I & = \int_{-\infty}^\infty \cos x \ e^{-\frac {x^2}2} dx & \small \color{#3D99F6} \text{By Euler's formula: }e^{i\theta} = \cos \theta + i \sin \theta \\ & = \int_{-\infty}^\infty \Re \left(e^{ix} e^{-\frac {x^2}2}\right) dx & \small \color{#3D99F6} \text{where }\Re (z) \text{ is the real part of }z. \\ & = \Re \left(\int_{-\infty}^\infty e^{-\frac 12 (x^2-2ix)} dx \right) \\ & = \Re \left(\int_{-\infty}^\infty e^{-\frac 12 ((x-i)^2+1)} dx \right) & \small \color{#3D99F6} \text{Let }u = \frac {x-i}{\sqrt 2} \implies du = \frac {dx}{\sqrt 2} \\ & = \Re \left(\sqrt {\frac 2e} \color{#3D99F6} \int_{-\infty}^\infty e^{-u^2} du \right) & \small \color{#3D99F6} \text{Note that } \int_{-\infty}^\infty e^{-u^2} du \text{ is Gaussian integral.} \\ & = \Re \left(\sqrt {\frac 2e} \color{#3D99F6} \sqrt \pi \right) \\ & = \sqrt {\frac {2\pi}e} \approx \boxed{1.520} \end{aligned}

integral_(-infinity)^infinity (cos(x))/e^(x^2/2) dx = sqrt((2 pi)/e)~~1.5203469010662808056119401467549756270361074187790463375283638685267346239300583043148415372595655771

Yes, but how?

Humberto Bento - 6 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...