A calculus problem by Hamza A

Calculus Level 4

0 1 1 + x 6 d x = π a \large \displaystyle\int _{ 0 }^{ \infty }{ \dfrac { 1 }{ 1+{ x }^{ 6 } } \, dx } =\dfrac { \pi }{ a }

If the equation above holds true for some constant a a , find a a .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Miraj Shah
Apr 18, 2016

I = 0 1 1 + x 6 d x = 0 1 1 1 + x 6 d x + 1 1 1 + x 6 d x I = \displaystyle \int_{0}^{\infty} \frac{1}{1+x^6}\, dx = \displaystyle \int_{0}^{1} \frac{1}{1+x^6}\, dx + \displaystyle \int_{1}^{\infty} \frac{1}{1+x^6}\, dx

Let I = 1 1 1 + x 6 d x I' = \displaystyle \int_{1}^{\infty} \frac{1}{1+x^6}\, dx

Now substituting x = 1 p x = \frac{1}{p} and then replacing p p by x x we get:

I = 0 1 x 4 1 + x 6 d x I' = \displaystyle \int_{0}^{1} \frac{x^4}{1+x^6}\, dx

Therefore now we can write I I as :

I = 0 1 1 1 + x 6 d x + 0 1 x 4 1 + x 6 d x = 0 1 1 + x 4 1 + x 6 d x I=\displaystyle \int_{0}^{1} \frac{1}{1+x^6}\, dx +\displaystyle \int_{0}^{1} \frac{x^4}{1+x^6}\, dx = \displaystyle \int_{0}^{1} \frac{1+x^4}{1+x^6}\, dx

I = 0 1 ( 1 + x 2 ) 2 1 + x 6 d x 0 1 2 x 2 1 + x 6 d x I = \displaystyle \int_{0}^{1} \frac{(1+x^2)^2}{1+x^6}\, dx - \displaystyle \int_{0}^{1} \frac{2x^2}{1+x^6}\, dx

I = 0 1 1 + x 2 1 x + x 2 d x 2 3 0 1 3 x 2 1 + ( x 3 ) 2 d x I = \displaystyle \int_{0}^{1} \frac{1+x^2}{1-x+x^2}\, dx - \frac{2}{3} \displaystyle \int_{0}^{1} \frac{3x^2}{1+(x^3)^2}\, dx

I = 0 1 1 x 2 + 1 ( x 1 x ) 2 + 1 d x 2 3 [ t a n 1 ( x 3 ) ] 0 1 I = \displaystyle \int_{0}^{1} \frac{\frac{1}{x^2} + 1}{(x-\frac{1}{x})^2 +1}\, dx - \frac{2}{3} \biggl[tan^{-1}(x^3) \biggr]_{0}^{1}

I = [ t a n 1 ( x 1 x ) ] 0 1 2 3 [ t a n 1 ( x 3 ) ] 0 1 I = \biggl[tan^{-1}\left(x-\frac{1}{x} \right)\biggr]_0^1 - \frac{2}{3} \biggl[tan^{-1}(x^3) \biggr]_{0}^{1}

I = ( 0 ( π 2 ) ) 2 3 ( π 4 ) I = \left(0-\left(-\frac{\pi}{2}\right)\right) - \frac{2}{3}\left(\frac{\pi}{4}\right)

I = π 3 I = \frac{\pi}{3}

Therefore a = 3 a=\boxed{3}

Chew-Seong Cheong
Apr 17, 2016

I = 0 1 1 + x 6 d x Let tan θ = x 3 sec 2 θ d θ = 3 x 2 d x = 0 π 2 sec 2 θ 3 tan 2 3 θ ( 1 + tan 2 θ ) d θ = 1 3 0 π 2 sin 2 3 cos 2 3 d θ = 1 6 B ( 1 6 , 5 6 ) B ( m , n ) is Beta function. = Γ ( 1 6 ) Γ ( 5 6 ) 6 Γ ( 1 ) Γ ( n ) is Gamma function. = Γ ( 1 6 ) Γ ( 1 1 6 ) 6 ( 0 ! ) Γ ( n ) = ( n 1 ) ! = 1 6 π sin ( π 6 ) Γ ( x ) Γ ( 1 x ) = π sin ( x π ) = π 3 \begin{aligned} I & = \int_0^\infty \frac{1}{1+x^6} \, dx \quad \quad \quad \quad \quad \quad \small \color{#3D99F6}{\text{Let} \tan \theta = x^3 \, \Rightarrow \sec^2 \theta \, d \theta = 3x^2 \, dx} \\ & = \int_0^\frac{\pi}{2} \frac{\sec^2 \theta}{3 \tan^\frac{2}{3} \theta (1+\tan^2 \theta)} \, d\theta \\ & = \frac{1}{3} \int_0^\frac{\pi}{2} \sin^{-\frac{2}{3}} \cos^{\frac{2}{3}} \, d\theta \\ & = \frac{1}{6} \cdot{} B \left(\frac{1}{6}, \frac{5}{6} \right) \quad \quad \quad \quad \quad \quad \, \, \small \color{#3D99F6}{B(m,n) \text{ is Beta function.}} \\ & = \frac{\Gamma \left(\frac{1}{6} \right) \Gamma \left(\frac{5}{6} \right)}{6 \Gamma \left(1 \right)} \quad \quad \quad \quad \quad \quad \quad \, \small \color{#3D99F6}{\Gamma(n) \text{ is Gamma function.}} \\ & = \frac{\Gamma \left(\frac{1}{6} \right) \Gamma \left(1-\frac{1}{6} \right)}{6(\color{#3D99F6}{0!})} \quad \quad \quad \quad \quad \, \, \small \color{#3D99F6}{\Gamma(n) = (n-1)!} \\ & = \frac{1}{6} \cdot{} \color{#3D99F6}{\frac{\pi}{\sin \left(\frac{\pi}{6} \right)}} \quad \quad \quad \quad \quad \quad \quad \, \, \small \color{#3D99F6}{\Gamma(x) \Gamma (1-x) = \frac{\pi}{\sin \left(x \pi \right)}} \\ & = \frac{\pi}{3} \end{aligned}

a = 3 \Rightarrow a = \boxed{3}

Best way is by beta function!

Md Zuhair - 4 years ago
First Last
Apr 12, 2016

Using the Residue Theorem which states κ f ( z ) d z = 2 π i R e s ( f ( z ) , z 0 ) \displaystyle\oint\limits_\kappa f(z)dz = 2\pi i \sum_{}^{}Res(f(z),z_{0})

κ f ( z ) d z = R R f ( z ) d z + κ f ( z ) d z \displaystyle\oint\limits_\kappa f(z)dz = \displaystyle\int_{-R}^{R} f(z)dz + \displaystyle\int\limits_\kappa f(z)dz

lim R κ f ( z ) d z = 0 \displaystyle\lim_{R\to\infty}\quad\int\limits_\kappa f(z)dz = 0

Using a semicircle contour, κ \kappa , in the 1 s t 1^{st} and 2 n d 2^{nd} quadrants of radius R R allows only the usage of the poles in this region which are e π i 6 , e π i 2 , e^{\frac{\pi i}{6}},e^{\frac{\pi i}{2}}, and e 5 π i 6 e^{\frac{5\pi i}{6}} .

α = e π i 6 \alpha = e^{\frac{\pi i}{6}}

The residue of f ( z ) = 1 z 6 + 1 f(z)=\frac{1}{z^6+1} at a pole is, lim z β ( z β ) f ( z ) \displaystyle\lim_{z\to\beta}\quad (z-\beta) f(z) , where β \beta is a pole, to find the a 1 a_{-1} term in the Laurent series.

lim z α z α z 6 + 1 = e 11 π i 6 6 \lim_{z\to\alpha}\quad \frac{z-\alpha}{z^6+1} = \frac{e^{\frac{11\pi i}{6}}}{6} and repeating for α 3 \alpha^3 and α 5 \alpha^5 produces the sum of the residues in κ \kappa :

e 11 π i 6 6 + e 3 π i 2 6 + e 5 π i 6 6 = i 6 \frac{e^{\frac{11\pi i}{6}}}{6}+\frac{e^{\frac{3\pi i}{2}}}{6}+\frac{e^{\frac{5\pi i}{6}}}{6} = \frac{-i}{6} , but there are 3 more poles on another semi-circle contour on the 3 r d 3^{rd} and 4 t h 4^{th} quadrants. They are obtainable by rotating κ \kappa by 180 ˚ 180˚ but multiplying the sum by 2 would do. Therefore the sum of all residues is i 3 \frac{-i}{3}

2 π i × i 3 = 2 π 3 \displaystyle 2\pi i \times \frac{-i}{3} = \frac{2\pi}{3}

The function is even so a a f ( x ) d x = 2 0 a f ( x ) d x \displaystyle\int_{-a}^{a}f(x)dx = 2\int_{0}^{a}f(x)dx .

0 f ( x ) d x = π 3 \displaystyle\int_{0}^{\infty}f(x)dx = \boxed{\frac{\pi}{3}}

Did it the same way!

rishabh singhal - 5 years, 1 month ago

can you tell me any good resource from where i can learn about this theorem

Kalpa Roy - 5 years, 1 month ago

Log in to reply

@kalpa roy Here is a good youtube video explaining it. https://goo.gl/297pNN

First Last - 5 years, 1 month ago

Log in to reply

thanks Jasper Braun

Kalpa Roy - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...