A calculus problem by Hamza A

Calculus Level 5

lim n ( a n γ γ a n ) 2 n \large \displaystyle\lim _{ n\to\infty }{ \left( \dfrac { { a }_{ n }^{ \gamma } }{ { \gamma }^{ { a }_{ n } } } \right) ^{ 2n } }

Let a n = H n ln n { a }_{ n }={ H }_{ n }-\ln { n } , where H n { H }_{ n } denote the n th n^{\text{th}} harmonic number .

If the limit above is equal to A e B γ \dfrac { Ae }{ B\gamma } for positive coprime integers A A and B B , find A + B A+B .

Notation : γ \gamma denote the Euler-Mascheroni constant , γ 0.5772 \gamma \approx 0.5772 .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rohan Shinde
Dec 2, 2019

Note that as n \displaystyle n\to\infty H n ln ( n ) + γ + 1 2 n H_n\sim \ln(n)+\gamma+\frac{1}{2n}

Hence ξ = lim n ( a n γ γ a n ) 2 n \xi=\lim_{n\to\infty}\left(\frac{a_{n}^{\gamma}}{\gamma^{a_n}}\right)^{2n} = lim n ( ( γ + 1 2 n ) γ γ γ + 1 2 n ) 2 n =\displaystyle \lim_{n\to\infty}\left(\frac{\left(\gamma+\frac{1}{2n}\right)^{\gamma}}{\gamma^{\gamma+\frac{1}{2n}}}\right)^{2n} = lim n ( ( 1 + 1 2 n γ ) γ γ 1 2 n ) 2 n =\displaystyle \lim_{n\to\infty}\left(\frac{\left(1+\frac{1}{2n\gamma}\right)^{\gamma}}{\gamma^{\frac{1}{2n}}}\right)^{2n} = lim n ( 1 + 1 2 n γ ) 2 n γ γ =\displaystyle \lim_{n\to\infty}\frac{\left(1+\frac{1}{2n\gamma}\right)^{2n\gamma}}{\gamma}

But lim n ( 1 + 1 2 n γ ) 2 n γ = e \displaystyle \lim_{n\to\infty}\left(1+\frac{1}{2n\gamma}\right)^{2n\gamma}=e

Hence ξ = e γ \xi=\frac{e}{\gamma}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...