A calculus problem by chickpeas and tahini

Calculus Level 4

2 0 π / 2 ln ( 2 sin x cos x ) d x = A π ln B \large 2\displaystyle\int _{ 0 }^{ \pi /2 }{ \ln { \left( 2\sin { x } \cos { x } \right) dx } } =-A\pi \ln { B }

The equation above holds true for positive integers A A and B B . Find A + B A+B .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Starting with I = 2 0 π 2 l n ( s i n 2 x ) d x \text{Starting with } \mathfrak{I} = 2\int_{0}^{\frac{\pi}{2}} ln(sin2x)dx

Substitute 2x=t , reduce the integral & replace t with x and it is now : 0 π l n ( s i n x ) d x \text{Substitute 2x=t , reduce the integral \& replace t with x and it is now : } \int_{0}^{\pi} ln(sinx)dx

Using 0 2 a f ( x ) d x = 2 0 a f ( x ) d x if f(2a-x)=f(x) we get 1 2 I = 0 π 2 l n ( s i n x ) d x \text{Using } \int_{0}^{2a}f(x)dx=2\int_{0}^{a}f(x)dx \text{ if f(2a-x)=f(x) we get } \frac{1}{2}\mathfrak{I} = \int_{0}^{\frac{\pi}{2}} ln(sinx)dx

1 2 I = 0 π 2 l n ( s i n x ) d x = 0 π 2 l n ( c o s x ) d x \begin{aligned} \frac{1}{2}\mathfrak{I} = \int_{0}^{\frac{\pi}{2}} ln(sinx)dx = \int_{0}^{\frac{\pi}{2}} ln(cosx)dx\end{aligned}

I = 0 π 2 ( l n ( s i n x ) + l n ( c o s x ) ) d x I = 0 π 2 l n ( s i n 2 x 2 ) d x = 0 π 2 ( l n ( s i n 2 x ) l n 2 ) d x \begin{aligned} \mathfrak{I} = \int_{0}^{\frac{\pi}{2}} (ln(sinx) + ln(cosx))dx \implies \mathfrak{I} = \int_{0}^{\frac{\pi}{2}} ln(\frac{sin2x}{2})dx = \int_{0}^{\frac{\pi}{2}} (ln(sin2x) - ln2)dx\end{aligned}

I = 0 π 2 l n ( s i n 2 x ) d x ( π 2 l n 2 ) \mathfrak{I} = \underbrace{\color{#D61F06}{\int_{0}^{\frac{\pi}{2}} ln(sin2x)dx}} - (\frac{\pi}{2}ln2)

The braced integral is nothing but 1 2 I as we started with \text{The braced integral is nothing but } \frac{1}{2}\mathfrak{I} \text{ as we started with}

I = 1 2 I π l n 2 I = π l n 2 \begin{aligned} \mathfrak{I} = \frac{1}{2}\mathfrak{I} -\pi ln2\implies \mathfrak{I} = \boxed{-\pi ln2}\end{aligned}

A = 1 , B = 2 A + B = 3 \large \implies A=1,B=2\implies \boxed{A+B=3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...