Primes everywhere

Calculus Level 5

0 1 x 13 + 13 d x = 1 a b / a 0 1 1 + x 13 d x \displaystyle\int _{ 0 }^{ \infty }{ \dfrac { 1 }{ { x }^{ 13 }+13 } \, dx } =\dfrac { 1 }{ { a }^{ b/a } } \int _{ 0 }^{ \infty }{ \dfrac { 1 }{ 1+{ x }^{ 13 } } \, dx }

The equation above holds true for constants a a and b b with prime a a . Find a + b a+b .


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

First Last
Jun 14, 2017

0 1 1 + x 13 d x = 0 0 e t ( 1 + x 13 ) d t d x = \displaystyle\int_0^\infty\frac1{1+x^{13}}dx=\int_0^\infty\int_0^\infty e^{-t(1+x^{13})}dt\,dx=

1 13 0 e u u 12 13 d u 0 e t t 1 13 d t by u = t x 13 \frac1{13}\int_0^\infty e^{-u}u^\frac{-12}{13}du\int_0^\infty e^{-t}t^\frac{-1}{13}dt\quad\text{by }u=tx^{13}

Using the same idea: 0 1 13 + x 1 3 d x = 0 0 e t ( 13 + x 13 ) d t d x = 1 13 0 e u u 12 13 d u 0 e 13 t t 1 13 d t \displaystyle\int_0^\infty\frac1{13+x^13}dx=\int_0^\infty\int_0^\infty e^{-t(13+x^{13})}dt\,dx = \frac1{13}\int_0^\infty e^{-u}u^\frac{-12}{13}du\int_0^\infty e^{-13t}t^\frac{-1}{13}dt

And w = 13 t w=13t results in:

0 1 13 + x 13 d x = 1 3 1 13 1 3 2 0 e u u 12 13 d u 0 e w w 1 13 d w = 1 1 3 12 13 0 1 1 + x 13 d x \displaystyle\int_0^\infty\frac1{13+x^{13}}dx = \frac{13^\frac{1}{13}}{13^2}\int_0^\infty e^{-u}u^\frac{-12}{13}du\int_0^\infty e^{-w}w^\frac{-1}{13}dw = \frac1{13^\frac{12}{13}}\int_0^\infty\frac1{1+x^{13}}dx

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...