A calculus problem by Hamza A

Calculus Level 5

n = 0 1 ( n 2 ) ! = e ( a + erf ( b ) ) \large \displaystyle\sum _{ n=0 }^{ \infty }{ \frac { 1 }{ \left( \frac { n }{ 2 } \right) ! } } =e(a+\text{ erf }(b))

The equation above holds true for positive integers a a and b b . Find a + b a+b .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Joel Yip
Apr 14, 2016

Firstly nice problem.

Rearranging, n = 0 1 ( n 2 ) ! = 1 ( 0 2 ) ! + 1 ( 1 2 ) ! + 1 ( 2 2 ) ! + = 1 0 ! + 1 ( 1 2 ) ! + 1 1 ! + 1 ( 1 + 1 2 ) ! + = 1 0 ! + 1 1 ! + 1 2 ! + 1 3 ! + + 1 ( 1 2 ) ! + 1 ( 1 + 1 2 ) ! + 1 ( 2 + 1 2 ) ! + = n = 0 1 n ! + m = 0 1 ( m + 1 2 ) ! \sum _{ n=0 }^{ \infty }{ \frac { 1 }{ \left( \frac { n }{ 2 } \right) ! } } =\frac { 1 }{ \left( \frac { 0 }{ 2 } \right) ! } +\frac { 1 }{ \left( \frac { 1 }{ 2 } \right) ! } +\frac { 1 }{ \left( \frac { 2 }{ 2 } \right) ! } +\cdots \\ =\frac { 1 }{ 0! } +\frac { 1 }{ \left( \frac { 1 }{ 2 } \right) ! } +\frac { 1 }{ 1! } +\frac { 1 }{ \left( 1+\frac { 1 }{ 2 } \right) ! } +\cdots \\ =\frac { 1 }{ 0! } +\frac { 1 }{ 1! } +\frac { 1 }{ 2! } +\frac { 1 }{ 3! } +\dots +\frac { 1 }{ \left( \frac { 1 }{ 2 } \right) ! } +\frac { 1 }{ \left( 1+\frac { 1 }{ 2 } \right) ! } +\frac { 1 }{ \left( 2+\frac { 1 }{ 2 } \right) ! } +\cdots \\ =\sum _{ n=0 }^{ \infty }{ \frac { 1 }{ n! } } +\sum _{ m=0 }^{ \infty }{ \frac { 1 }{ \left( m+\frac { 1 }{ 2 } \right) ! } }

The left sum is well-known and the sum would be e e . The proof is here .

The right sum is m = 0 1 ( m + 1 2 ) ! = 1 ( 1 2 ) ! + 1 ( 1 + 1 2 ) ! + 1 ( 2 + 1 2 ) ! + \sum _{ m=0 }^{ \infty }{ \frac { 1 }{ \left( m+\frac { 1 }{ 2 } \right) ! } } =\frac { 1 }{ \left( \frac { 1 }{ 2 } \right) ! } +\frac { 1 }{ \left( 1+\frac { 1 }{ 2 } \right) ! } +\frac { 1 }{ \left( 2+\frac { 1 }{ 2 } \right) ! } +\cdots

Now if we use gamma functions, Γ ( n + 1 ) = n ! \Gamma \left( n+1 \right) =n!

1 ( 1 2 ) ! + 1 ( 1 + 1 2 ) ! + 1 ( 2 + 1 2 ) ! + = 1 Γ ( 3 2 ) + 1 Γ ( 5 2 ) + 1 Γ ( 7 2 ) + = 1 1 2 Γ ( 1 2 ) + 1 3 2 Γ ( 3 2 ) + 1 5 2 Γ ( 5 2 ) = 1 1 2 × Γ ( 1 2 ) + 1 1 2 × 3 2 × Γ ( 1 2 ) + 1 1 2 × 3 2 × 5 2 × Γ ( 1 2 ) + \frac { 1 }{ \left( \frac { 1 }{ 2 } \right) ! } +\frac { 1 }{ \left( 1+\frac { 1 }{ 2 } \right) ! } +\frac { 1 }{ \left( 2+\frac { 1 }{ 2 } \right) ! } +\cdots =\frac { 1 }{ \Gamma \left( \frac { 3 }{ 2 } \right) } +\frac { 1 }{ \Gamma \left( \frac { 5 }{ 2 } \right) } +\frac { 1 }{ \Gamma \left( \frac { 7 }{ 2 } \right) } +\cdots \\ =\frac { 1 }{ \frac { 1 }{ 2 } \Gamma \left( \frac { 1 }{ 2 } \right) } +\frac { 1 }{ \frac { 3 }{ 2 } \Gamma \left( \frac { 3 }{ 2 } \right) } +\frac { 1 }{ \frac { 5 }{ 2 } \Gamma \left( \frac { 5 }{ 2 } \right) } \\ =\frac { 1 }{ \frac { 1 }{ 2 } \times \Gamma \left( \frac { 1 }{ 2 } \right) } +\frac { 1 }{ \frac { 1 }{ 2 } \times \frac { 3 }{ 2 } \times \Gamma \left( \frac { 1 }{ 2 } \right) } +\frac { 1 }{ \frac { 1 }{ 2 } \times \frac { 3 }{ 2 } \times \frac { 5 }{ 2 } \times \Gamma \left( \frac { 1 }{ 2 } \right) } +\cdots

Using the Euler's Reflection Formula,

Γ ( 1 2 ) Γ ( 1 1 2 ) = π s i n ( π 2 ) = π \Gamma \left( \frac { 1 }{ 2 } \right) \Gamma \left( 1-\frac { 1 }{ 2 } \right) =\frac { \pi }{ sin\left( \frac { \pi }{ 2 } \right) } \\ =\pi

Γ ( 1 2 ) 2 = π Γ ( 1 2 ) = π { \Gamma \left( \frac { 1 }{ 2 } \right) }^{ 2 }=\pi \\ \Gamma \left( \frac { 1 }{ 2 } \right) =\sqrt { \pi }

So the sum becomes this,

1 π ( 1 1 2 + 1 1 2 × 3 2 + 1 1 2 × 3 2 × 5 2 + ) \frac { 1 }{ \sqrt { \pi } } \left( \frac { 1 }{ \frac { 1 }{ 2 } } +\frac { 1 }{ \frac { 1 }{ 2 } \times \frac { 3 }{ 2 } } +\frac { 1 }{ \frac { 1 }{ 2 } \times \frac { 3 }{ 2 } \times \frac { 5 }{ 2 } } +\cdots \right)

1 π ( 1 1 2 + 1 1 2 × 3 2 + 1 1 2 × 3 2 × 5 2 + ) = 1 π ( 2 1 1 + 2 2 1 × 3 + 2 3 1 × 3 × 5 + ) = 1 π n = 0 2 2 n + 1 ( 2 n + 1 ) ! ! \frac { 1 }{ \sqrt { \pi } } \left( \frac { 1 }{ \frac { 1 }{ 2 } } +\frac { 1 }{ \frac { 1 }{ 2 } \times \frac { 3 }{ 2 } } +\frac { 1 }{ \frac { 1 }{ 2 } \times \frac { 3 }{ 2 } \times \frac { 5 }{ 2 } } +\cdots \right) =\frac { 1 }{ \sqrt { \pi } } \left( \frac { { 2 }^{ 1 } }{ 1 } +\frac { { 2 }^{ 2 } }{ 1\times 3 } +\frac { { 2 }^{ 3 } }{ 1\times 3\times 5 } +\cdots \right) \\ =\frac { 1 }{ \sqrt { \pi } } \sum _{ n=0 }^{ \infty }{ \frac { { 2 }^{ 2n+1 } }{ \left( 2n+1 \right) !! } }

e r f ( x ) = e x 2 π n = 0 ( 2 x ) 2 n + 1 ( 2 n + 1 ) ! ! erf\left( x \right) =\frac{e^{-x^2}}{\sqrt{\pi}} \sum_{n=0}^\infty {\frac{(2x)^{2n+1}}{(2n+1)!!}}

So this sum is e × e r f ( 1 ) e\times erf\left( 1 \right)

Not forgeting to add the earlier e e ,

makes e + e × e r f ( 1 ) = e ( 1 + e r f ( 1 ) ) e+e\times erf\left( 1 \right) =e\left( 1+erf\left( 1 \right) \right)

so 1 + 1 = 2 1+1=2 .

Moderator note:

Great explanation of this problem. Do we know what e r f ( 1 ) erf (1) is equal to?

thanks!

nice solution btw :)

Hamza A - 5 years, 2 months ago

1 π 1 1 e x 2 d x \frac { 1 }{ \sqrt { \pi } } \int _{ -1 }^{ 1 }{ { e }^{ -{ x }^{ 2 } } } dx

Joel Yip - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...