A calculus problem by Hamza A

Calculus Level 2

lim x 0 x sin x x 3 \displaystyle\lim _{ x\rightarrow 0 }{ \frac { x-\sin { x } }{ { x }^{ 3 } } }

is in the form A B ! \frac{A}{B!}

where A , B A,B are positive coprime integers

then find A + B A+B


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Feb 16, 2016

M E T H O D 1 \Large \color{#302B94}{\boxed{\color{#D61F06}{\mathcal{METHOD}~1}}} Use expansion series of sin x i.e sin x = x x 3 3 ! + x 5 5 ! x 7 7 ! \small{\color{#3D99F6}{\sin x =x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-\dfrac{x^7}{7!}\cdots}} so that limit simplifies to : lim x 0 1 3 ! x 2 5 ! + x 4 7 ! \displaystyle\lim _{ x\rightarrow 0 }\dfrac{1}{3!}-\dfrac{x^2}{5!}+\dfrac{x^4}{7!}\cdots = 1 3 ! \Large=\dfrac{1}{3!} M E T H O D 2 \Large\color{#302B94}{\boxed{\color{#D61F06}{\mathcal{METHOD}~2}}} Use L'Hôpital's Rule and lim x 0 1 cos x x 2 = 1 2 \small{\color{#3D99F6}{\lim _{ x\rightarrow 0 }\dfrac{1-\cos x}{x^2}=\dfrac{1}{2}}} lim x 0 x sin x x 3 = lim x 0 1 cos x 3 x 2 \displaystyle\lim _{ x\rightarrow 0 }{ \frac { x-\sin { x } }{ { x }^{ 3 } } } =\displaystyle\lim _{ x\rightarrow 0 }{ \frac { 1-\cos { x } }{ { 3x }^{ 2} } } = 1 6 = 1 3 ! \Large =\dfrac{1}{6}=\dfrac{1}{3!}


1 + 3 = 4 \huge \therefore 1+3=\color{#0C6AC7}{\boxed{{\color{forestgreen}{4}}}}

awesome solution!

Hamza A - 5 years, 3 months ago

Same method.

Mehul Arora - 5 years, 3 months ago
Ashish Menon
Mar 7, 2016

Evaluating this we obtaun the answer 1 6 \Large \frac {1}{6} .
And, 6 = 3 × 2 × 1 = 3 ! 6=3×2×1=3!
So, A A = 1 1
And, B B = 3 3 .
So, A + B A+B = 1 + 3 = 4 1+3=4



0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...