A calculus problem by Hamza A

Calculus Level 3

0 a d x x + a 2 x 2 = π B \large \displaystyle\int _{ 0 }^{ a }{ \dfrac { dx }{ x+\sqrt { { a }^{ 2 }-{ x }^{ 2 } } } } =\dfrac { \pi }{ B }

The equation above holds true for a positive real number a a . Find B B .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Apr 5, 2016

Substitute x = a sin θ x=a\sin \theta such that d x = cos θ d θ \mathrm{d}x=\cos \theta~ \mathrm{d}\theta and then using 1 sin 2 θ = cos 2 θ 1-\sin^2\theta=\cos^2\theta .


I = 0 π 2 cos θ d θ sin θ + c o s θ \mathfrak{I}=\displaystyle\int_0^{\frac{\pi}{2}}\dfrac{\cos \theta~\mathrm{d}\theta}{\sin \theta +cos \theta }

Using a b f ( x ) d x = a b f ( a + b x ) d x \displaystyle\int_a^b f(x)\mathrm{d}x=\displaystyle\int_a^b f(a+b-x)\mathrm{d}x and adding to get:

2 I = 0 π 2 cos θ + sin θ d θ sin θ + c o s θ 2\mathfrak{I}=\displaystyle\int_0^{\frac{\pi}{2}}\dfrac{\cancel{\cos \theta+\sin \theta}~\mathrm{d}\theta}{\cancel{\sin \theta +cos \theta} }

2 I = 0 π 2 d θ \implies 2\mathfrak I=\displaystyle\int_0^{\frac{\pi}{2}}\mathrm{d}\theta

I = π 4 \Large \implies \mathfrak I=\dfrac{\pi}{4}

B = 4 \huge \therefore\boxed{ B=4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...