A calculus problem by Hamza A

Calculus Level 3

0 1 x 2 e x sin x d x \large \int_0^1 x^2 e^x \sin x \, dx

If the integral above is equal to a b \dfrac ab , where a a and b b are coprime positive integers, find a + b a+b .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

I = 0 1 x 2 e x sin x d x = 0 1 x 2 e x ( e i x ) d x = 0 1 x 2 e ( 1 + i ) x d x = 0 1 1 ( 1 + i ) 2 2 2 a e a ( 1 + i ) x d x Introduce a temporary variable a = 1 = [ 1 ( 1 + i ) 2 2 2 a 0 1 e a ( 1 + i ) x d x ] = [ 1 ( 1 + i ) 2 2 2 a ( e a ( 1 + i ) 1 a ( 1 + i ) ) ] = [ 1 ( 1 + i ) 2 ( d z d a ) 2 d 2 d 2 z ( e z 1 z ) ] = [ 1 ( 1 + i ) 2 ( 1 + i ) 2 d d z ( e z z e z 1 z 2 ) ] = [ e z z e z z 2 e z z 2 + 2 ( e z 1 ) z 3 ] = [ ( z 2 2 z + 2 ) e z 2 z 3 ] Putting back a = 1 z = 1 + i = [ ( 2 i 2 2 i + 2 ) e z 2 2 i ( 1 + i ) ] = [ 1 1 i ] = [ 1 + i 2 ] = 1 2 \begin{aligned} I & = \int_0^1 x^2e^x \sin x \space dx \\ & = \int_0^1 x^2e^x \cdot{} \Im \left(e^{ix}\right) \space dx \\ & = \Im \int_0^1 x^2 e^{(1+i)x} \space dx \\ & = \Im \int_0^1 \frac{1}{(1+i)^2} \cdot{} \frac{\partial^2}{\partial^2 \color{#3D99F6}{a}} e^{\color{#3D99F6}{a}(1+i)x} \space dx \quad \quad \small \color{#3D99F6}{\text{Introduce a temporary variable }a = 1} \\ & = \Im \left[ \frac{1}{(1+i)^2} \cdot{} \frac{\partial^2}{\partial^2 a} \int_0^1 e^{a(1+i)x} \space dx \right] \\ & = \Im \left[ \frac{1}{(1+i)^2} \cdot{} \frac{\partial^2}{\partial^2 a} \left( \frac{ e^{a(1+i)} - 1}{a(1+i)}\right) \right] \\ & = \Im \left[ \frac{1}{(1+i)^2} \left(\frac{dz}{da}\right)^2 \frac{d^2}{d^2 z} \left( \frac{ e^z - 1}{z}\right) \right] \\ & = \Im \left[ \frac{1}{(1+i)^2} \left(1+i \right)^2 \frac{d}{dz} \left( \frac{ e^z}{z} - \frac{e^z - 1}{z^2} \right) \right] \\ & = \Im \left[ \frac{e^z}{z} - \frac{e^z}{z^2} - \frac{e^z}{z^2} + \frac{2(e^z-1)}{z^3} \right] \\ & = \Im \left[ \frac{(z^2 - 2z + 2)e^z-2}{z^3} \right] \quad \quad \small \color{#3D99F6}{\text{Putting back }a = 1 \space \Rightarrow z = 1+i} \\ & = \Im \left[ \frac{(2i - 2-2i + 2)e^z-2}{2i(1+i)} \right] \\ & = \Im \left[ \frac{1}{1-i} \right] = \Im \left[ \frac{1+i}{2} \right] = \frac{1}{2} \end{aligned}

a + b = 1 + 2 = 3 \Rightarrow a+b = 1+2 = \boxed{3} .

Sir, can you show how does the partial derivative from the 6th row transform to (dz/da)^2 and d2/dz2 in the 7th row. Does it involved chain rule?

boon yang - 5 years, 2 months ago

Log in to reply

Let f ( a ) = e a ( 1 + i ) 1 a ( 1 + i ) f(a) = \dfrac{e^{a(1+i)}-1}{a(1+i)} , then d d x f ( a ) = d d z d z d x f ( a ) \dfrac{d}{dx} f(a) = \dfrac{d}{dz} \dfrac{dz}{dx} f(a) . Please note that d z d x = 1 + i \dfrac{dz}{dx} = 1+i is a constant, therefore, d d x f ( a ) = d z d x d d z f ( a ) \dfrac{d}{dx} f(a) = \dfrac{dz}{dx} \dfrac{d}{dz} f(a) and d 2 d x 2 f ( a ) = d z d x d d z d z d x ( d d z f ( a ) ) = ( d z d x ) 2 d 2 d z 2 f ( a ) \dfrac{d^2}{dx^2} f(a) = \dfrac{dz}{dx} \dfrac{d}{dz} \dfrac{dz}{dx} \left( \dfrac{d}{dz} f(a) \right) = \left(\dfrac{dz}{dx}\right)^2 \dfrac{d^2}{dz^2} f(a)

Chew-Seong Cheong - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...