A calculus problem by Hamza A

Calculus Level 3

0 1 ln ( x ) 1 x d x = ζ ( a ) \large \displaystyle\int _{ 0 }^{ 1 }{ \frac { \ln { (x) } }{ 1-x } \, dx } =-\zeta(a)

The equation above holds true for some constant a a . Find a a .

Notation : ζ ( ) \zeta(\cdot) denotes the Riemann zeta function .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

I = 0 1 ln x 1 x d x Let u = 1 x x = 1 u d x = d u = 0 1 ln ( 1 u ) u d u By Maclaurin series... = 0 1 k = 1 u k k u d u = 0 1 k = 1 ( u k 1 k ) d u = k = 1 0 1 u k 1 k d u = k = 1 [ u k k 2 ] 0 1 = k = 1 1 k 2 = ζ ( 2 ) \begin{aligned} I & = \int_0^1 \frac{\ln x}{1-x} dx \quad \quad \small \color{#3D99F6}{\text{Let }u = 1-x \space \Rightarrow x = 1-u \space \Rightarrow dx = - du} \\ & = \int_0^1 \frac{\color{#3D99F6}{\ln (1-u)}}{u} du \quad \quad \small \color{#3D99F6}{\text{By Maclaurin series...}} \\ & = \int_0^1 \frac{\color{#3D99F6}{\small \displaystyle - \sum_{k=1}^\infty \frac{u^k}{k}}}{u} du \\ & = - \int_0^1 \sum_{k=1}^\infty \left( \frac{u^{k-1}}{k}\right) du \\ & = - \sum_{k=1} ^\infty \int_0^1 \frac{u^{k-1}}{k} du \\ & = - \sum_{k=1}^\infty \left[ \frac{u^{k}}{k^2} \right]_0^1 \\ & = - \sum_{k=1}^\infty \frac{1}{k^2} \\ & = - \zeta(2) \end{aligned}

a = 2 \Rightarrow a = \boxed{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...