A calculus problem by Hamza A

Calculus Level 3

1 2 x ln ( x 1 ) d x \large \displaystyle\int _{ 1 }^{ 2 }{ x\ln { (x-1) } \, dx }

If the integral above is equal to a b -\dfrac ab , where a a and b b are coprime positive integers, find a + b a+b .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sam Bealing
Apr 5, 2016

Use substitution u = x 1 u=x-1 :

1 2 x ln ( x 1 ) d x = 0 1 ( u + 1 ) ln ( u ) d u = [ 1 2 u 2 ln ( u ) 1 4 u 2 + u ln ( u ) u ] 0 1 = ( 5 4 0 ) = 5 4 \int_{1}^{2}x \ln{(x-1)} dx=\int_{0}^{1}(u+1)\ln{(u)}du=\left [ \frac{1}{2}u^2 \ln{(u)}-\frac{1}{4} u^2+u \ln{(u)}-u \right ]_{0}^{1}=(-\frac{5}{4}-0)=-\frac{5}{4}

I = 1 2 x ln ( x 1 ) d x Let u = ln ( x 1 ) e u = x 1 x = 1 + e u d x = e u d u = 0 ( 1 + e u ) u e u d u Let u = t d u = d t = 0 t e t ( 1 + e t ) d t = 0 ( t e t + t e 2 t ) d t = 0 t 2 1 e t d t 1 4 0 ( 2 t ) 2 1 e 2 t d ( 2 t ) = Γ ( 2 ) 1 4 Γ ( 2 ) = 5 4 Γ ( 2 ) = 5 4 \begin{aligned} I & = \int_1^2 x \ln(x-1) \space dx \quad \quad \small \color{#3D99F6}{\text{Let }u = \ln (x-1) \space \Rightarrow e^u = x - 1 \space \Rightarrow x = 1+e^u \space \Rightarrow dx = e^u \space du} \\ & = \int_{-\infty}^0 (1+e^u) u e^u \space du \quad \quad \small \color{#3D99F6}{\text{Let }u = -t \space \Rightarrow du = - \space dt} \\ & = \int_{-\infty}^0 t e^{-t} (1+e^{-t}) \space dt \\ & = - \int^{\infty}_0 (t e^{-t} + te^{-2t}) \space dt \\ & = - \int^{\infty}_0 t^{2-1} e^{-t} \space dt - \frac{1}{4} \int^{\infty}_0 (2t)^{2-1} e^{-2t} \space d(2t) \\ & = - \Gamma (2) - \frac{1}{4} \Gamma (2) = - \frac{5}{4} \Gamma (2) = - \frac{5}{4} \end{aligned}

a + b = 5 + 4 = 9 \Rightarrow a + b = 5 + 4 = \boxed{9}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...