A calculus problem by Hamza A

Calculus Level 3

lim x [ ( 1 + 1 x ) x e ] x \large \lim_{x\to \infty} \left [ \dfrac{\left(1+ \frac1x \right)^x}e\right ]^x

If the limit above can be expressed as e A / B e^{-A/B} , where A A and B B are coprime positive integers, find A + B A+B .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

First Last
Jun 9, 2017

L = lim x x ln ( 1 + 1 x ) x e L=\lim_{x\to\infty}x\ln{\frac{(1+\frac1{x})^x}{e}}

ln L = lim x x 2 ln ( 1 + 1 x ) x = \quad\ln{L}=\lim_{x\to\infty}x^2\ln(1+\frac1{x})-x=

lim x x ln ( 1 + 1 x ) 1 1 x = apply L’Hopital’s Rule twice and cleaning up: \lim_{x\to\infty}\frac{x\ln(1+\frac1{x})-1}{\frac1{x}}=\text{ apply L'Hopital's Rule twice and cleaning up:}

ln L = lim x x 3 2 ( x 3 + 2 x 2 + x ) = 1 2 \ln{L}=\lim_{x\to\infty}\frac{-x^3}{2(x^3+2x^2+x)} = \frac{-1}{2}

L = e 1 2 L = \boxed{e^\frac{-1}{2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...