Sum of 1 n 2 \frac{1}{n^2} = π \pi !!

Calculus Level 2

1 1 n 2 + 2 n = ? \large \sum_{1}^{\infty}\dfrac{1}{n^2+2n} = ?

π 2 6 \frac{\pi^{2}}{6} π \pi 1 2 \frac{1} {2} 1 3 4 \frac{3} {4} e

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hussain Alghazal
Aug 23, 2017

Marco Brezzi
Aug 23, 2017

Relevant wiki: Partial fractions , Telescoping series

S = n = 1 1 n 2 + 2 n = n = 1 1 n ( n + 2 ) = 1 2 n = 1 [ 1 n 1 n + 2 ] c c c c c c c c c by partial fractions = 1 2 ( 1 + 1 2 ) = 3 4 c c c c c c c c c by Telescoping series sum \begin{aligned} S&=\displaystyle\sum_{n=1}^{\infty}\dfrac{1}{n^2+2n}\\ &=\displaystyle\sum_{n=1}^{\infty}\dfrac{1}{n(n+2)}\\ &=\dfrac{1}{2}\displaystyle\sum_{n=1}^{\infty}\left[\dfrac{1}{n}-\dfrac{1}{n+2}\right]\phantom{ccccccccc} \color{#3D99F6}\text{by partial fractions}\\ &=\dfrac{1}{2}\left(1+\dfrac{1}{2}\right)=\boxed{\dfrac{3}{4}}\phantom{ccccccccc} \color{#3D99F6}\text{by Telescoping series sum} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...