A calculus problem by Jeremy marquardt

Calculus Level pending

f ( x ) f(x) is the solution to the differential equation 2 x = y ln ( x ) 1 + ( x ln ( y ) ) 2 ln ( x y y y 1 x ) 2x = \dfrac{y^{\ln(x)}}{1+(x^{\ln(y)})^2}\ln(x^{\frac{y'}{y}}y^{\frac{1}{x}}) what is lim x 0 ln ( f ( arctan ( x ) 2 ) ) \displaystyle \lim_{x\rightarrow 0} \ln(f(\sqrt[2]{\arctan(x)})) (assume the constant of integration is zero)


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jeremy Marquardt
Aug 4, 2016

first, multiply both sides by dx

2 x d x = y l n ( x ) 1 + ( x l n ( y ) ) 2 l n ( x y y y 1 x ) d x 2xdx=\frac{y^{ln(x)}}{1+(x^{ln(y)})^2}ln(x^{\frac{y'}{y}}y^{\frac{1}{x}})dx

Then, separate the l n ( x y y y 1 x ) ln(x^{\frac{y'}{y}}y^{\frac{1}{x}}) and bring out the exponents, which will yield

2 x d x = y l n ( x ) 1 + ( x l n ( y ) ) 2 ( l n ( x ) y d y d x + l n ( y ) x ) d x 2xdx = \frac{y^{ln(x)}}{1+(x^{ln(y)})^2}(\frac{ln(x)}{y}\frac{dy}{dx}+\frac{ln(y)}{x})dx (notice how we changed y' to d y d x \frac{dy}{dx} )

Next, distribute the dx across ( l n ( x ) y d y d x + l n ( y ) x ) (\frac{ln(x)}{y}\frac{dy}{dx}+\frac{ln(y)}{x})

This yields 2 x d x = y l n ( x ) 1 + ( x l n ( y ) ) 2 ( l n ( x ) y d y + l n ( y ) x d x ) 2xdx = \frac{y^{ln(x)}}{1+(x^{ln(y)})^2}(\frac{ln(x)}{y}dy+\frac{ln(y)}{x}dx)

notice that ( l n ( x ) y d y + l n ( y ) x d x ) (\frac{ln(x)}{y}dy+\frac{ln(y)}{x}dx) equals d ( l n ( x ) l n ( y ) ) d(ln(x)ln(y)) go ahead and make the transfer

we now have 2 x d x = y l n ( x ) 1 + ( x l n ( y ) ) 2 d ( l n ( x ) l n ( y ) ) 2xdx = \frac{y^{ln(x)}}{1+(x^{ln(y)})^2}d(ln(x)ln(y))

now notice that x l n ( y ) = y l n ( x ) = e l n ( x ) l n ( y ) x^{ln(y)}=y^{ln(x)}=e^{ln(x)ln(y)}

if we substitute z for ln(x)ln(y), that gives us 2 x d x = e z 1 + ( e z ) 2 d z 2xdx = \frac{e^{z}}{1+(e^z)^2}dz

now we can integrate this quite easily, and our answer is x 2 = a r c t a n ( y l n ( x ) ) x^2 = arctan(y^{ln(x)}) and solving for y yields t a n ( x 2 ) ( 1 l n ( x ) ) = y tan(x^2)^{(\frac{1}{ln(x)})}=y we said at the beginning of the problem that the constant of integration would be zero, so we don't have to worry about it.

putting f(x) in the configuration of the limit we get 2 l n ( x ) l n ( a r c t a n ( x ) ) 2\frac{ln(x)}{ln(arctan(x))}

using L'Hopital's rule, 2 ( x 2 + 1 ) a r c t a n ( x ) x 2\frac{(x^2+1)arctan(x)}{x}

applying it again, 2 2 x a r c t a n ( x ) + 1 1 2\frac{2xarctan(x)+1}{1}

which when evaluated with x=0 equals 2!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...