Let G n be the geometric mean of the following n + 1 combinations:
( 0 n ) , ( 1 n ) , ( 2 n ) , … , ( n n ) .
Find n → ∞ lim n G n .
Give your answer to 3 decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Please explain the first step.
Using Stirling's approximation of Binomial Coefficients , for 0 ≤ k ≤ n ( k n ) ∼ 2 n H ( n k ) Where H ( ⋅ ) is the Binary Entropy function . Hence, n G n ∼ 2 n 1 ∑ k = 0 n H ( n k ) → ( a ) 2 ∫ 0 1 H ( x ) d x = e , where in (a) we have used the fundamental theorem of integral calculus.
Problem Loading...
Note Loading...
Set Loading...
We have: ( 0 n ) ( 1 n ) ( 2 n ) … ( n n ) = k = 0 ∏ n k ! ( n − k ) ! n ! = k = 1 ∏ n ( n − k + 1 ) n + 1 − 2 k
On the other hand, k = 1 ∑ n ( n + 1 − 2 k ) = 0 or ( n + 1 ) k = 1 ∑ n ( n + 1 − 2 k ) = 1
Thus, ( 0 n ) ( 1 n ) ( 2 n ) … ( n n ) = k = 1 ∏ n ( n + 1 n − k + 1 ) n + 1 − 2 k = k = 1 ∏ n ( 1 − n + 1 k ) n + 1 − 2 k
This implies that G n = n + 1 k = 1 ∏ n ( n + 1 n − k + 1 ) n + 1 − 2 k = k = 1 ∏ n ( 1 − n + 1 k ) 1 − n + 1 2 k
⇒ n 1 ln G n = n 1 k = 1 ∑ n ( 1 − n + 1 2 k ) ln ( 1 − n + 1 k ) ⇒ n → ∞ lim n 1 ln G n = 0 ∫ 1 ( 1 − 2 x ) ln ( 1 − x ) d x
Applying integral by part, we get: 0 ∫ 1 ( 1 − 2 x ) ln ( 1 − x ) d x = a → 1 − lim 0 ∫ a ( 1 − 2 x ) ln ( 1 − x ) d x = 2 1
Hence, n → ∞ lim n 1 ln G n = 2 1 ⇒ n → ∞ lim n G n = e ≈ 1 . 6 4 9