A calculus problem by Kishore S. Shenoy

Calculus Level 4

0 π x sin x 1 + cos 2 x d x \large\int_0^\pi \dfrac{x\sin x}{1+\cos^2x}\, dx

If the above integral can be written as A π B C \dfrac {A\pi^B}C , where A A , B B and C C are positive integers with A A and C C being coprime integers. Find A + B + C A+B+C .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant wiki: Definite Integrals

A substitution c o s x = t cosx=t yields J = 1 1 c o s 1 x 1 + x 2 d x \displaystyle J=\int_{-1}^{1} \frac{cos^{-1}x}{1+x^2}dx

Since c o s 1 ( x ) = π c o s 1 x \displaystyle cos^{-1}(-x) = \pi-cos^{-1}x is valid when x ( 1 , 1 ) x\in(-1,1) so we have ,

J = 2 0 1 π 1 + x 2 d x J J = π [ t a n 1 x ] 0 1 = π 2 4 \displaystyle J = 2\int_{0}^{1}\frac{\pi}{1+x^2}dx - J\implies J =\pi[tan^{-1}x]_{0}^{1} = \frac{\pi^{\color{#D61F06}{2}}}{\color{#20A900}{4}}

Thus the answer 2 + 4 + 1 = 7 \boxed{2+4+1=7}

Kishore S. Shenoy
May 24, 2016

Relevant wiki: Definite Integrals

Let f ( x ) = x 2 x 2 I = 0 π x f ( sin x ) d x f(x) = \dfrac{x}{2-x^2}\\\Rightarrow I = \int_0^\pi xf(\sin x)\, dx

Now using properties of definite integral, 0 a f ( x ) d x = 0 a f ( a x ) d x \displaystyle\int_0^a f(x)\, dx = \int_0^a f(a-x)\, dx I = 0 π x f ( sin x ) d x = 0 π ( π x ) f ( sin ( π x ) ) d x = 0 π ( π x ) f ( sin x ) d x \begin{aligned}I &= \int_0^\pi xf(\sin x)\, dx\\ &= \int_0^\pi (\pi-x)f(\sin (\pi-x))\, dx\\&=\int_0^\pi (\pi-x)f(\sin x)\, dx\end{aligned}

Adding both the equations, I = π 2 0 π f ( sin x ) d x I = \dfrac\pi2\int_0^\pi f(\sin x)\, dx

Now using the property 0 2 a f ( x ) d x = 0 a f ( x ) + f ( 2 a x ) d x \displaystyle\int_0^{2a}f(x)\,dx = \int_0^a f(x) + f(2a-x)\,dx , we get I = π 0 π / 2 sin x 1 + cos 2 x d x t = cos x , d t = sin x d x = 0 1 1 1 + t 2 d t = π ( π 4 0 ) = π 2 4 \begin{aligned}I &= \pi \int_0^{\pi/2} \dfrac{\sin x}{1+\cos^2x}\, dx \quad\color{#3D99F6}{t = \cos x,~dt = -\sin x\, dx}\\&=\int_0^1\dfrac 1{1+t^2}\, dt\\&=\pi\left(\dfrac\pi 4 - 0\right)\\&=\large\boxed{\dfrac{\pi^2}{4}}\end{aligned}

Note.

We can say generally that 0 π x f ( sin x ) d x = π 0 π / 2 f ( sin x ) d x \boxed{\displaystyle\int_0^\pi x f(\sin x)\, dx = \pi\int_0^{\pi/2}f(\sin x)\, dx}

Moderator note:

Good approach using the property.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...