A calculus problem by Kishore S. Shenoy

Calculus Level 5

0 π / 4 sec x 1 + 2 sin 2 x d x \large \int_0^{\pi/4}\dfrac{\sec x}{1+2\sin^2 x}\,dx

If the value of the above integral can be written as A B π C + 1 B ln ( D + B A ) \dfrac{\sqrt A}B\pi^C + \dfrac1 B\ln\left(D+B\sqrt A\right) , where A , B , C A,B,C and D D are positive integers with minimised A A , find A + 2 B + C + D A+2B+C+D .


The answer is 44.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I hope my solution would be the one you guys may be looking for.

0 π 4 sec x 1 + 2 sin 2 x d x = 0 π 4 1 ( 1 + 2 sin 2 x ) cos x d x \displaystyle \int _{ 0 }^{ \frac { \pi }{ 4 } }{ \frac { \sec { x } }{ 1+2\sin ^{ 2 }{ x } } dx } =\int _{ 0 }^{ \frac { \pi }{ 4 } }{ \frac { 1 }{ (1+2\sin ^{ 2 }{ x } )\cos { x } } dx }

Now, I call it "partial fraction"

0 π 4 1 ( 1 + 2 sin 2 x ) cos x d x = 1 3 0 π 4 ( 1 cos x + 2 cos x 1 + 2 sin 2 x ) d x \displaystyle \int _{ 0 }^{ \frac { \pi }{ 4 } }{ \frac { 1 }{ (1+2\sin ^{ 2 }{ x } )\cos { x } } dx } =\frac { 1 }{ 3 } \int _{ 0 }^{ \frac { \pi }{ 4 } }{ \left( \frac { 1 }{ \cos { x } } +\frac { 2\cos { x } }{ 1+2\sin ^{ 2 }{ x } } \right) dx }

1 3 0 π 4 ( 1 cos x + 2 cos x 1 + 2 sin 2 x ) d x = 1 3 0 π 4 ( 1 cos x ) d x + 1 3 0 π 4 ( 2 cos x 1 + 2 sin 2 x ) d x \displaystyle \frac { 1 }{ 3 } \int _{ 0 }^{ \frac { \pi }{ 4 } }{ \left( \frac { 1 }{ \cos { x } } +\frac { 2\cos { x } }{ 1+2\sin ^{ 2 }{ x } } \right) dx } =\frac { 1 }{ 3 } \int _{ 0 }^{ \frac { \pi }{ 4 } }{ \left( \frac { 1 }{ \cos { x } } \right) dx } +\frac { 1 }{ 3 } \int _{ 0 }^{ \frac { \pi }{ 4 } }{ \left( \frac { 2\cos { x } }{ 1+2\sin ^{ 2 }{ x } } \right) dx }

= 1 3 0 π 4 sec x d x + 1 3 x = 0 π 4 ( 2 1 + 2 sin 2 x ) d sin x \displaystyle =\frac { 1 }{ 3 } \int _{ 0 }^{ \frac { \pi }{ 4 } }{ \sec { x } dx } +\frac { 1 }{ 3 } \int _{ x=0 }^{ \frac { \pi }{ 4 } }{ \left( \frac { 2 }{ 1+2\sin ^{ 2 }{ x } } \right) d\sin { x } }

= ln sec x + tan x 3 + 2 arctan ( 2 sin x ) 3 \displaystyle { = }\frac { \ln { \left| \sec { x } +\tan { x } \right| } }{ 3 } +\frac { \sqrt { 2 } \arctan { \left( \sqrt { 2 } \sin { x } \right) } }{ 3 }

= ln 1 + 2 3 + 2 π 12 \displaystyle =\frac { \ln { \left| 1+\sqrt { 2 } \right| } }{ 3 } +\frac { \sqrt { 2 } \pi }{ 12 }

= ln 17 + 12 2 12 + 2 π 12 \displaystyle =\frac { \ln { \left| 17+12\sqrt { 2 } \right| } }{ 12 } +\frac { \sqrt { 2 } \pi }{ 12 }

Nice! Upvoted!

Kishore S. Shenoy - 5 years ago
Sam Bealing
May 24, 2016

0 π / 4 sec x 1 + 2 sin 2 x d x = 0 π / 4 cos x cos 2 x + 2 sin 2 x cos 2 x d x = 0 π / 4 cos x 2 sin 4 x + sin 2 x + 1 d x \int_{0}^{\pi/4} \dfrac{\sec{x}}{1+2 \sin^2{x}} \; dx=\int_{0}^{\pi/4} \dfrac{\cos{x}}{\cos^2{x}+2 \sin^2{x} \cos^2{x}} \; dx =\int_{0}^{\pi/4} \dfrac{\cos{x}}{-2 \sin^4{x}+\sin^2{x}+1} \; dx

u = sin x d u cos x = d x u=\sin{x} \Rightarrow \dfrac{du}{\cos{x}}=dx

= 0 1 2 1 2 u 4 + u 2 + 1 d u = 0 1 2 2 3 ( 2 u 2 + 1 ) + 1 6 ( u + 1 ) 1 6 ( u 1 ) d u \cdots=\int_{0}^{\frac{1}{\sqrt{2}}} \dfrac{1}{-2u^4+u^2+1} \; du=\int_{0}^{\frac{1}{\sqrt{2}}} \dfrac{2}{3(2u^2+1)}+\dfrac{1}{6(u+1)}-\dfrac{1}{6(u-1)} \; du

= 2 3 0 1 2 1 2 u 2 + 1 d u + 1 6 0 1 2 1 u + 1 d u 1 6 0 1 2 1 u 1 d u \cdots=\dfrac{2}{3} \int_{0}^{\frac{1}{\sqrt{2}}} \dfrac{1}{2u^2+1} \; du+ \dfrac{1}{6} \int_{0}^{\frac{1}{\sqrt{2}}} \dfrac{1}{u+1} \; du-\dfrac{1}{6} \int_{0}^{\frac{1}{\sqrt{2}}} \dfrac{1}{u-1} \; du

w = 2 u d w 2 = d u w=\sqrt{2} u \Rightarrow \dfrac{dw}{\sqrt{2}}=du

2 3 0 1 2 1 2 u 2 + 1 d u = 2 3 0 1 1 w 2 + 1 d w = 2 3 [ arctan w ] 0 1 = 2 12 π \dfrac{2}{3} \int_{0}^{\frac{1}{\sqrt{2}}} \dfrac{1}{2u^2+1} \; du =\dfrac{\sqrt{2}}{3} \int_{0}^{1} \dfrac{1}{w^2+1} \; dw= \dfrac{\sqrt{2}}{3} \left [\arctan{w} \right]_{0}^{1}=\dfrac{\sqrt{2}}{12} \pi

1 6 0 1 2 1 u + 1 d u = 1 6 [ log u + 1 ] 0 1 2 = 1 6 log ( 1 + 1 2 ) \dfrac{1}{6} \int_{0}^{\frac{1}{\sqrt{2}}} \dfrac{1}{u+1} \; du=\dfrac{1}{6} \left [\log{u+1} \right]_{0}^{\frac{1}{\sqrt{2}}} =\dfrac{1}{6} \log{\left (1+\dfrac{1}{\sqrt{2}} \right )}

1 6 0 1 2 1 u 1 d u = 1 6 [ log u 1 ] 0 1 2 = 1 6 log ( 1 1 2 ) \dfrac{1}{6} \int_{0}^{\frac{1}{\sqrt{2}}} \dfrac{1}{u-1} \; du=\dfrac{1}{6} \left [\log{u-1} \right]_{0}^{\frac{1}{\sqrt{2}}} =\dfrac{1}{6} \log{\left (1-\dfrac{1}{\sqrt{2}} \right )}

2 12 π + 1 6 log ( 1 + 1 2 ) 1 6 log ( 1 1 2 ) = 2 12 π + 1 6 ( log ( 2 + 1 2 2 1 2 ) ) \dfrac{\sqrt{2}}{12} \pi+\dfrac{1}{6} \log{\left (1+\dfrac{1}{\sqrt{2}} \right )}-\dfrac{1}{6} \log{\left (1-\dfrac{1}{\sqrt{2}} \right )}=\dfrac{\sqrt{2}}{12} \pi+ \dfrac{1}{6} \left ( \log{\left ( \dfrac{\frac{\sqrt{2}+1}{\sqrt{2}}}{\frac{\sqrt{2}-1}{\sqrt{2}}} \right)} \right)

= 2 12 π + 1 6 ( log ( 3 + 2 2 ) ) = 2 12 π + 1 12 ( log ( 3 + 2 2 ) 2 ) = 2 12 π + 1 12 ( log ( 17 + 12 2 ) ) \cdots=\dfrac{\sqrt{2}}{12} \pi+ \dfrac{1}{6} \left ( \log{(3+2 \sqrt{2})} \right) =\dfrac{\sqrt{2}}{12} \pi+ \dfrac{1}{12} \left ( \log{(3+2 \sqrt{2})^2} \right)=\dfrac{\sqrt{2}}{12} \pi+ \dfrac{1}{12} \left ( \log{(17+12 \sqrt{2})} \right)

A = 2 , B = 12 , C = 1 , D = 12 , E = 17 A + B + C + D + E = 44 A=2,B=12,C=1,D=12,E=17 \Rightarrow A+B+C+D+E=\boxed{\boxed{44}}

Oye! My approach is exactly the same! Any other simpler method?

Kishore S. Shenoy - 5 years ago

Log in to reply

Dis is a bit shorter than mine. I Did 4Substitutions in all . ! :) (Length is almost same)

Firstly Let tanx = t then 1+t^2 = y^2 Then separated into 2 parts

to evaluate one of the integral y=1/z then t^2 = 1-z^2

Prakhar Bindal - 5 years ago

Log in to reply

Hmm... I am trying to find an easy way. It's a package problem.

Kishore S. Shenoy - 5 years ago

Not simpler but shorter, put sinx=t then write cos^2 (x)=1-t^2 then use partial fractions

Abhi Kumbale - 5 years ago

Log in to reply

Samething.

Kishore S. Shenoy - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...