∫ 0 π / 4 1 + 2 sin 2 x sec x d x
If the value of the above integral can be written as B A π C + B 1 ln ( D + B A ) , where A , B , C and D are positive integers with minimised A , find A + 2 B + C + D .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice! Upvoted!
∫ 0 π / 4 1 + 2 sin 2 x sec x d x = ∫ 0 π / 4 cos 2 x + 2 sin 2 x cos 2 x cos x d x = ∫ 0 π / 4 − 2 sin 4 x + sin 2 x + 1 cos x d x
u = sin x ⇒ cos x d u = d x
⋯ = ∫ 0 2 1 − 2 u 4 + u 2 + 1 1 d u = ∫ 0 2 1 3 ( 2 u 2 + 1 ) 2 + 6 ( u + 1 ) 1 − 6 ( u − 1 ) 1 d u
⋯ = 3 2 ∫ 0 2 1 2 u 2 + 1 1 d u + 6 1 ∫ 0 2 1 u + 1 1 d u − 6 1 ∫ 0 2 1 u − 1 1 d u
w = 2 u ⇒ 2 d w = d u
3 2 ∫ 0 2 1 2 u 2 + 1 1 d u = 3 2 ∫ 0 1 w 2 + 1 1 d w = 3 2 [ arctan w ] 0 1 = 1 2 2 π
6 1 ∫ 0 2 1 u + 1 1 d u = 6 1 [ lo g u + 1 ] 0 2 1 = 6 1 lo g ( 1 + 2 1 )
6 1 ∫ 0 2 1 u − 1 1 d u = 6 1 [ lo g u − 1 ] 0 2 1 = 6 1 lo g ( 1 − 2 1 )
1 2 2 π + 6 1 lo g ( 1 + 2 1 ) − 6 1 lo g ( 1 − 2 1 ) = 1 2 2 π + 6 1 ⎝ ⎛ lo g ⎝ ⎛ 2 2 − 1 2 2 + 1 ⎠ ⎞ ⎠ ⎞
⋯ = 1 2 2 π + 6 1 ( lo g ( 3 + 2 2 ) ) = 1 2 2 π + 1 2 1 ( lo g ( 3 + 2 2 ) 2 ) = 1 2 2 π + 1 2 1 ( lo g ( 1 7 + 1 2 2 ) )
A = 2 , B = 1 2 , C = 1 , D = 1 2 , E = 1 7 ⇒ A + B + C + D + E = 4 4
Oye! My approach is exactly the same! Any other simpler method?
Log in to reply
Dis is a bit shorter than mine. I Did 4Substitutions in all . ! :) (Length is almost same)
Firstly Let tanx = t then 1+t^2 = y^2 Then separated into 2 parts
to evaluate one of the integral y=1/z then t^2 = 1-z^2
Log in to reply
Hmm... I am trying to find an easy way. It's a package problem.
Not simpler but shorter, put sinx=t then write cos^2 (x)=1-t^2 then use partial fractions
Problem Loading...
Note Loading...
Set Loading...
I hope my solution would be the one you guys may be looking for.
∫ 0 4 π 1 + 2 sin 2 x sec x d x = ∫ 0 4 π ( 1 + 2 sin 2 x ) cos x 1 d x
Now, I call it "partial fraction"
∫ 0 4 π ( 1 + 2 sin 2 x ) cos x 1 d x = 3 1 ∫ 0 4 π ( cos x 1 + 1 + 2 sin 2 x 2 cos x ) d x
3 1 ∫ 0 4 π ( cos x 1 + 1 + 2 sin 2 x 2 cos x ) d x = 3 1 ∫ 0 4 π ( cos x 1 ) d x + 3 1 ∫ 0 4 π ( 1 + 2 sin 2 x 2 cos x ) d x
= 3 1 ∫ 0 4 π sec x d x + 3 1 ∫ x = 0 4 π ( 1 + 2 sin 2 x 2 ) d sin x
= 3 ln ∣ sec x + tan x ∣ + 3 2 arctan ( 2 sin x )
= 3 ln ∣ ∣ 1 + 2 ∣ ∣ + 1 2 2 π
= 1 2 ln ∣ ∣ 1 7 + 1 2 2 ∣ ∣ + 1 2 2 π