Interesting Integrals 1

Calculus Level 3

e 2 d x x ( ln x ) 3 = A B \large\int_{e^2}^{\infty }\dfrac{dx}{x (\ln{x})^3 }=\dfrac{A}{B}

If the equation above holds true for coprime positive integers A A and B B , find A + B \sqrt{A+B} .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rishabh Jain
Jul 7, 2016

Substitute ln x = t such that d x x = d t \small{\color{teal}{ \ln x=t} \text{ such that } \color{teal}{\dfrac{\mathrm{d}x}{x}=\mathrm{d}t}} .

J = 2 d t t 3 = [ 1 2 t 2 ] 2 = [ 1 2 t 2 ] 2 = 1 8 \mathcal J=\int_2^{\infty}\dfrac{\mathrm{dt}}{t^3}=\left[\dfrac{-1}{2t^2}\right]_2^{\infty}=\left[\dfrac{1}{2t^2}\right]_{\infty}^2=\dfrac 18

1 + 8 = 3 \Large\therefore \sqrt{1+8}=\boxed{\color{#D61F06}{3}}

I = e 2 1 x ln 3 x d x Let u = ln x e u d u = d x = 2 e u e u u 3 d u = 2 1 u 3 d u = 1 2 u 2 2 = 0 + 1 8 = 1 8 \begin{aligned} I & = \int_{e^2} ^\infty \frac 1{x\ln ^3 x} dx & \small \color{#3D99F6}{\text{Let }u = \ln x \implies e^u du = dx} \\ & = \int_2^\infty \frac {e^u}{e^u \cdot u^3} du \\ & = \int_2^\infty \frac 1{u^3} du \\ & = - \frac 1{2u^2} \bigg|_2^\infty \\ & = 0 + \frac 18 = \frac 18 \end{aligned}

A + B = 1 + 8 = 3 \implies \sqrt{A+B} = \sqrt{1+8} = \boxed{3}

Two dx in the first line... Typo

Rishabh Jain - 4 years, 11 months ago

Log in to reply

Thanks. I have edited it.

Chew-Seong Cheong - 4 years, 11 months ago
Noel Lo
Jul 18, 2016

@Krishna Shankar Pls post more of such problems! Looking forward to more! Thanks! :)

@Noel Lo -Glad to know that you like my problems.Will keep updating such problems.Thank you :))))

Krishna Shankar - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...