Lazy Limits 2!

Calculus Level 3

lim x π / 4 ( tan x ) tan ( 2 x ) = ? \large \lim_{x\to\pi /4} (\tan x)^{\tan (2x)} = \, ?

Clarification : e 2.71828 e \approx 2.71828 denotes the Euler's number .

e 1 e^{1} None of these choices e 2 e^{2} e 2 e^{-2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

L = lim x π 4 ( tan x ) tan ( 2 x ) = exp [ ln ( lim x π 4 ( tan x ) tan ( 2 x ) ) ] exp ( z ) = e z = exp [ lim x π 4 ln ( tan x ) tan ( 2 x ) ] = exp [ lim x π 4 tan ( 2 x ) ln ( tan x ) ] = exp [ lim x π 4 ln ( tan x ) 1 tan ( 2 x ) ] As this is a 0/0 case, L’H o ˆ pital’s rule applies. = exp [ lim x π 4 1 + tan 2 x tan x 2 ( 1 + tan 2 ( 2 x ) ) tan 2 ( 2 x ) ] Differentiating up and down w.r.t. x = exp [ lim x π 4 1 + tan 2 x tan x 2 ( 1 tan 2 ( 2 x ) + 1 ) ] = exp [ 2 2 ] = e 1 \begin{aligned} \mathscr L & = \lim_{x \to \frac \pi 4} (\tan x)^{\tan (2x)} \\ & = \color{#3D99F6}{\exp} \left[ \ln \left( \lim_{x \to \frac \pi 4} (\tan x)^{\tan (2x)} \right) \right] \quad \quad \small \color{#3D99F6}{\exp (z) = e^z} \\ & = \exp \left[ \lim_{x \to \frac \pi 4} \ln (\tan x)^{\tan (2x)} \right] \\ & = \exp \left[ \lim_{x \to \frac \pi 4} \tan (2x) \ln (\tan x) \right] \\ & = \exp \left[ \lim_{x \to \frac \pi 4} \color{#3D99F6}{\frac {\ln (\tan x)}{\frac 1{\tan (2x)}}} \right] \quad \quad \small \color{#3D99F6}{\text{As this is a 0/0 case, L'Hôpital's rule applies.}} \\ & = \exp \left[ \lim_{x \to \frac \pi 4} \color{#3D99F6}{\frac {\frac {1+\tan^2 x}{\tan x}}{-\frac {2(1+\tan^2 (2x))}{\tan^2 (2x)}}} \right] \quad \quad \small \color{#3D99F6}{\text{Differentiating up and down w.r.t. }x} \\ & = \exp \left[ \lim_{x \to \frac \pi 4} \frac {\frac {1+\tan^2 x}{\tan x}}{-2\left(\frac 1{\tan^2(2x)} + 1 \right)} \right] \\ & = \exp \left[ \frac 2{-2} \right] = e^{-1} \end{aligned}

Therefore, the answer is: None of the others. \boxed{\text{None of the others.}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...