A calculus problem by Kumar Mayank

Calculus Level 1

1 2 1 6 + 1 24 1 120 + = ? \dfrac12 - \dfrac16 + \dfrac1{24} - \dfrac1{120} + \cdots = \, ?

Note that 6 = 2 × 3 , 24 = 2 × 3 × 4 , 120 = 2 × 3 × 4 × 5 , 6 = 2\times 3, 24 = 2\times3\times4, 120 = 2\times3\times4\times5, \cdots .

Clarification : e e denotes Euler's number , e 2.71828 e \approx 2.71828 .

e 1 e^{-1} e 3 e^3 e e e 2 e^2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Michael Huang
Nov 30, 2016

From Wikipedia , the identity to use is k = 0 z k k ! = e z \sum\limits_{k=0}^{\infty} \dfrac{z^k}{k!} = e^z

Expressing in summation form, 1 2 1 6 + 1 24 1 120 = ( 1 ) 2 1 2 + ( 1 ) 3 1 2 3 + ( 1 ) 4 1 2 3 4 + ( 1 ) 5 1 2 3 5 + = ( 1 ) 2 2 ! + ( 1 ) 3 3 ! + ( 1 ) 4 4 ! + ( 1 ) 5 5 ! + = n = 2 ( 1 ) n n ! \begin{array}{rl} \dfrac{1}{2} - \dfrac{1}{6} + \dfrac{1}{24} - \dfrac{1}{120} &= \dfrac{(-1)^2}{1 \cdot 2} + \dfrac{(-1)^3}{1 \cdot 2 \cdot 3} + \dfrac{(-1)^4}{1 \cdot 2 \cdot 3 \cdot 4} + \dfrac{(-1)^5}{1 \cdot 2 \cdot 3 \cdot 5} + \cdots\\ &= \dfrac{{\color{#3D99F6}(-1)}^2}{{\color{#D61F06}2!}} + \dfrac{{\color{#3D99F6}(-1)}^3}{{\color{#D61F06}3!}} + \dfrac{{\color{#3D99F6}(-1)}^4}{{\color{#D61F06}4!}} + \dfrac{{\color{#3D99F6}(-1)}^5}{{\color{#D61F06}5!}} + \cdots\\ &= \sum\limits_{n=2}^{\infty} \dfrac{{\color{#3D99F6}(-1)^n}}{{\color{#D61F06}n!}} \end{array} Observe that n = 2 ( 1 ) n n ! = n = 0 ( 1 ) n n ! n = 0 2 ( 1 ) n n ! \sum\limits_{n=2}^{\infty} \dfrac{(-1)^n}{n!} = \sum\limits_{n=0}^{\infty} \dfrac{(-1)^n}{n!} - {\color{#20A900}\sum\limits_{n=0}^{2} \dfrac{(-1)^n}{n!}} Since n = 0 2 ( 1 ) n n ! = 0 \color{#20A900}\sum\limits_{n=0}^{2} \dfrac{(-1)^n}{n!} = 0 this concludes that n = 2 ( 1 ) n n ! = n = 0 ( 1 ) n n ! = e 1 \sum\limits_{n=2}^{\infty} \dfrac{(-1)^n}{n!} = \sum\limits_{n=0}^{\infty} \dfrac{(-1)^n}{n!} = \boxed{e^{-1}}

Shouldn't the second sum go from n=0 to n=1?

Michal Mizia - 2 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...